What is the maximum number of electrons in an atom that can have the following quantum numbers? Specify the orbitals in which the electrons would be found. (a) n = 2, mS = +; (b) n = 4, ml = +1; (c) n = 3, l = 2; (d) n = 2, l = 0, mS = −; (e) n = 4, l = 3, ml = −2.
(a)
![Check Mark](/static/check-mark.png)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
Answer to Problem 3.123QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
For a given value of
For a given value of
If
Here,
(b)
![Check Mark](/static/check-mark.png)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
Answer to Problem 3.123QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
Each of
(c)
![Check Mark](/static/check-mark.png)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
Answer to Problem 3.123QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
Each of 3d orbitals occupies two electrons. Hence, 10 electrons are resulted. Therefore, the maximum number of electrons in an atom that can have the quantum number
(d)
![Check Mark](/static/check-mark.png)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
Answer to Problem 3.123QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
Here,
(e)
![Check Mark](/static/check-mark.png)
Interpretation:
The maximum number of electrons in an atom which can occupy in all orbitals having the given quantum numbers and the specification of the orbitals should be explained using the concept of quantum numbers.
Concept Introduction:
Quantum Numbers
The distribution of electron density in an atom is defined by Quantum numbers. They are derived from the mathematical solution of Schrodinger’s equation in the hydrogen atom. The four types of quantum numbers are the principal quantum number (
Principal Quantum Number (
The size of an orbital and the energy of an electron are specified by the principal quantum number (
Angular Momentum Quantum Number (
The shape of the atomic orbital is given by the angular momentum quantum number (
Magnetic Quantum Number (
The orientation of the orbital in space is given the magnetic quantum number (
There is one possible
There are three
There are five
There are seven
For a particular
Electron Spin Quantum Number (
For an electron, the orientation of the spin axis is given by it. An electron can spin in two directions. There are two possible ways to represent
Pauli exclusion principle
The two electrons in an atom should not have the four same quantum numbers. Two electrons are occupied in an atomic orbital because there are two possible values of
To find: Count the maximum number of electrons in an atom that can have the quantum number
Answer to Problem 3.123QP
The maximum number of electrons in an atom that can have the quantum number
Explanation of Solution
If
4f-orbital occupies two electrons. Therefore, the maximum number of electrons in an atom that can have the quantum number
Want to see more full solutions like this?
Chapter 3 Solutions
CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
- Nonearrow_forwardTransmitance 3. Which one of the following compounds corresponds to this IR spectrum? Point out the absorption band(s) that helped you decide. OH H3C OH H₂C CH3 H3C CH3 H3C INFRARED SPECTRUM 0.8- 0.6 0.4- 0.2 3000 2000 1000 Wavenumber (cm-1) 4. Consider this compound: H3C On the structure above, label the different types of H's as A, B, C, etc. In table form, list the labeled signals, and for each one state the number of hydrogens, their shifts, and the splitting you would observe for these hydrogens in the ¹H NMR spectrum. Label # of hydrogens splitting Shift (2)arrow_forwardNonearrow_forward
- Draw the Lewis structure of C2H4Oarrow_forwarda) 5. Circle all acidic (and anticoplanar to the Leaving group) protons in the following molecules, Solve these elimination reactions, and identify the major and minor products where appropriate: 20 points + NaOCH3 Br (2 productarrow_forwardNonearrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)