Power System Analysis & Design
6th Edition
ISBN: 9781305636187
Author: Glover, J. Duncan, Overbye, Thomas J. (thomas Jeffrey), Sarma, Mulukutla S.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.6MCQ
Consider Figure 3.4. For an ideal phase-shifting transformer, the imda nce is unchanged when it is referred from one side to the other.
(a) True
(b) False
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
the answere is not 4.16
Incorrect
Question 13
It has 16 address lines
8-bit bus, 16-bit address bus
16 bit bus, 8-bit address bus
8-bit bus. 8-bit address bus
16-bit bus, 16-bit address bus
Need handwritten solution no AI
Chapter 3 Solutions
Power System Analysis & Design
Ch. 3 - The Ohms law for the magnetic circuit states that...Ch. 3 - For an ideal transformer, the efficiency is (a) 0...Ch. 3 - For an ideal 2-winding transformer, the...Ch. 3 - An ideal transformer has no real or reactive power...Ch. 3 - For an ideal 2-winding transformer, an impedance...Ch. 3 - Consider Figure 3.4. For an ideal phase-shifting...Ch. 3 - Consider Figure 3.5. Match the following, those on...Ch. 3 - The units of admittance, conductance, and...Ch. 3 - Match the following: (i) Hysteresis loss (a) Can...Ch. 3 - For large power transformers rated more than 500...
Ch. 3 - For a short-circuit test on a 2-winding...Ch. 3 - The per-unit quantity is always dimensionless. (a)...Ch. 3 - Consider the adopted per-unit system for the...Ch. 3 - The ideal transformer windings are eliminated from...Ch. 3 - To convert a per-unit impedance from old to new...Ch. 3 - In developing per-unit circuits of systems such as...Ch. 3 - Prob. 3.17MCQCh. 3 - Prob. 3.18MCQCh. 3 - With the American Standard notation, in either a...Ch. 3 - Prob. 3.20MCQCh. 3 - In order to avoid difficulties with third-harmonic...Ch. 3 - Does an open connection permit balanced...Ch. 3 - Does an open- operation, the kVA rating compared...Ch. 3 - It is stated that (i) balanced three-phase...Ch. 3 - In developing per-unit equivalent circuits for...Ch. 3 - In per-unit equivalent circuits of practical...Ch. 3 - Prob. 3.27MCQCh. 3 - Prob. 3.28MCQCh. 3 - For developing per-unit equivalent circuits of...Ch. 3 - Prob. 3.30MCQCh. 3 - Prob. 3.31MCQCh. 3 - Prob. 3.32MCQCh. 3 - The direct electrical connection of the windings...Ch. 3 - Consider Figure 3.25 of the text for a transformer...Ch. 3 - (a) An ideal single-phase two-winding transformer...Ch. 3 - An ideal transformer with N1=1000andN2=250 is...Ch. 3 - Consider an ideal transformer with...Ch. 3 - A single-phase 100-kVA,2400/240-volt,60-Hz...Ch. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Consider a source of voltage v(t)=102sin(2t)V,...Ch. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - A single-phase step-down transformer is rated...Ch. 3 - For the transformer in Problem 3.10. The...Ch. 3 - Prob. 3.12PCh. 3 - A single-phase 50-kVA,2400/240-volt,60-Hz...Ch. 3 - A single-phase 50-kVA,2400/240-volt,60-Hz...Ch. 3 - Rework Problem 3.14 if the transformer is...Ch. 3 - A single-phase, 50-kVA,2400/240-V,60-Hz...Ch. 3 - The transformer of Problem 3.16 is supplying a...Ch. 3 - Using the transformer ratings as base quantities,...Ch. 3 - Using the transformer ratings as base quantities....Ch. 3 - Using base values of 20 kVA and 115 volts in zone...Ch. 3 - Prob. 3.21PCh. 3 - A balanced Y-connected voltage source with...Ch. 3 - Figure 3.32 shows the oneline diagram of a...Ch. 3 - For Problem 3.18, the motor operates at full load,...Ch. 3 - Consider a single-phase electric system shown in...Ch. 3 - A bank of three single-phase transformers, each...Ch. 3 - A three-phase transformer is rated...Ch. 3 - For the system shown in Figure 3.34. draw an...Ch. 3 - Consider three ideal single-phase transformers...Ch. 3 - Reconsider Problem 3.29. If Va,VbandVc are a...Ch. 3 - Prob. 3.31PCh. 3 - Determine the positive- and negative-sequence...Ch. 3 - Consider the three single-phase two-winding...Ch. 3 - Three single-phase, two-winding transformers, each...Ch. 3 - Consider a bank of this single-phase two-winding...Ch. 3 - Three single-phase two-winding transformers, each...Ch. 3 - Three single-phase two-winding transformers, each...Ch. 3 - Consider a three-phase generator rated...Ch. 3 - The leakage reactance of a three-phase,...Ch. 3 - Prob. 3.40PCh. 3 - Consider the single-line diagram of the power...Ch. 3 - For the power system in Problem 3.41, the...Ch. 3 - Three single-phase transformers, each rated...Ch. 3 - A 130-MVA,13.2-kV three-phase generator, which has...Ch. 3 - Figure 3.39 shows a oneline diagram of a system in...Ch. 3 - The motors M1andM2 of Problem 3.45 have inputs of...Ch. 3 - Consider the oneline diagram shown in Figure 3.40....Ch. 3 - With the same transformer banks as in Problem...Ch. 3 - Consider the single-Line diagram of a power system...Ch. 3 - A single-phase three-winding transformer has the...Ch. 3 - The ratings of a three-phase three-winding...Ch. 3 - Prob. 3.52PCh. 3 - The ratings of a three-phase, three-winding...Ch. 3 - An infinite bus, which is a constant voltage...Ch. 3 - A single-phase l0-kVA,2300/230-volt,60-Hz...Ch. 3 - Three single-phase two-winding transformers, each...Ch. 3 - A two-winding single-phase transformer rated...Ch. 3 - A single-phase two-winding transformer rated...Ch. 3 - Prob. 3.59PCh. 3 - PowerWorid Simulator case Problem 3_60 duplicates...Ch. 3 - Rework Example 3.12 for a+10 tap, providing a 10...Ch. 3 - A 23/230-kV step-up transformer feeds a...Ch. 3 - The per-unit equivalent circuit of two...Ch. 3 - Reconsider Problem 3.64 with the change that now...Ch. 3 - What are the advantages of correctly specifying a...Ch. 3 - Why is it important to reduce the moisture within...Ch. 3 - What should be the focus of transformer preventive...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Each branch of a three-phase star-connected load consists of a coil of resistance 4.2 Ω and reactance 5.6 Ω. The load is supplied at a line voltage of 400 V, 50 Hz. The total active power supplied to the load is measured by the two-wattmeter method. Draw a circuit diagram of the wattmeter connections and calculate their separate readings. Derive any formula used in your calculations. ANS: 13.1 kW, 1.71 kWarrow_forwardThree non-reactive loads are connected in delta across a three-phase, three-wire, 400 V supply in the following way: (i) 10 kW across R and Y lines; (ii) 6 kW across Y and B lines; (iii) 4 kW across B and R lines. Draw a phasor diagram showing the three line voltages and the load currents and determine: (a) the current in the B line and its phase relationship to the line voltage VBR; (b) the reading of a wattmeter whose current coils are connected in the B line and whose voltage circuit is connected across the B and R lines. The phase rotation is R–Y–B. Where would a second wattmeter be connected for the two-wattmeter method and what would be its reading? ANS: 21.8 A, 36°35′ lagging; 7 kW; 13 kWarrow_forwardNEED HANDWRITTEN SOLUTION DO NOT USE AI OR CHATGPTarrow_forward
- A factory has the following load with power factor of 0.85 lagging in each phase. Between the red and yellow phases 40 A, between the yellow and blue phases 50 A, and between the blue and red phases 60 A. If the supply is 415 V, three-phase, calculate the line currents. Draw a phasor diagram for phase and line quantities. Ensure to draw all necessary diagrams ANS: IR = 87.178<-68.380 A; IY = 78.102<-178.120 A; IB = 95.394<61.210 A.arrow_forwardAnswer question D only using by hand first darw cylinder then calculate show me starrow_forwardThe phase currents in a delta-connected three-phase load are as follows: between the red and yellow lines, 30 A at p.f. 0.707 leading; between the yellow and blue lines, 20 A at unity p.f.; between the blue and red lines, 25 A at p.f. 0.866 lagging. Calculate the line currents and draw the complete phasor diagram. ANS: 21.6 A in R, 49.6 A in Y, 43.5 A in Barrow_forward
- . Two wattmeters connected to measure the input to a balanced three-phase circuit indicate 2500 W and 500 W respectively. Find the power factor of the circuit: (a) when both readings are positive; (b) when the latter reading is obtained after reversing the con nections to the current-coil of one instrument. Draw the phasor and connection diagrams. ANS: 0.655, 0.359arrow_forwardExplain the advantage of connecting the low-voltage winding of distribution transformers in star. A factory has the following load with power factor of 0.9 lagging in each phase. Red phase 40 A, yellow phase 50 A and blue phase 60 A. If the supply is 400 V, three phase, four-wire, calculate the current in the neutral and the total active power. Draw a phasor diagram for phase and line quantities. Assume that, relative to the current in the red phase, the current in the yellow phase lags by 120° and that in the blue phase leads by 120°. ANS: 17.3 A, 31.2 kWarrow_forwardA three-phase, 400 V system has the following load connected in delta: between the red and yellow lines, a non-reactive resistor of 100 Ω; between the yellow and blue lines, a coil having a reactance of 60 Ω and negligible resistance; between the blue and red lines, a loss-free capacitor having a reactance of 130 Ω. Calculate: (a) the phase currents; (b) the line currents. Assume the phase sequence to be R–Y, Y–B and B–R. Also, draw the complete phasor diagram. ANS: 4.00 A, 6.67 A, 3.08 A, 6.85 A, 10.33 A, 5.8 Aarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
TRANSFORMERS - What They Are, How They Work, How Electricians Size Them; Author: Electrician U;https://www.youtube.com/watch?v=tXPy4OE7ApE;License: Standard Youtube License