The per-unit equivalent circuit of two transformers T a and T b connected in parallel, with the same nominal voltage ratio and the same reactan of 0.1 per unit on the same base, is shown in Figure 3.43. Transformer T b has a voltage-magnitude step-up toward the load of 1.05 times that of T a (that is, the tap on the secondary winding of T b is set to 1.05). The load is represented by 0.8 + j 0.6 per unit at a voltage V 2 = 1 .0 / 0 ° per unit. Determine the complex power in per unit transmitted to the load through each transformer, comment on how the transformers share the real and reactive powers.
The per-unit equivalent circuit of two transformers T a and T b connected in parallel, with the same nominal voltage ratio and the same reactan of 0.1 per unit on the same base, is shown in Figure 3.43. Transformer T b has a voltage-magnitude step-up toward the load of 1.05 times that of T a (that is, the tap on the secondary winding of T b is set to 1.05). The load is represented by 0.8 + j 0.6 per unit at a voltage V 2 = 1 .0 / 0 ° per unit. Determine the complex power in per unit transmitted to the load through each transformer, comment on how the transformers share the real and reactive powers.
Solution Summary: The author explains the complex power in per unit supplied to the load through each transformer and the process of sharing real and reactive powers by transformer.
The per-unit equivalent circuit of two transformers
T
a
and
T
b
connected in parallel, with the same nominal voltage ratio and the same reactan of 0.1 per unit on the same base, is shown in Figure 3.43. Transformer
T
b
has a voltage-magnitude step-up toward the load of 1.05 times that of
T
a
(that is, the tap on the secondary winding of
T
b
is set to 1.05). The load is represented by
0.8
+
j
0.6
per unit at a voltage
V
2
=
1
.0
/
0
°
per unit. Determine the complex power in per unit transmitted to the load through each transformer, comment on how the transformers share the real and reactive powers.
Draw the fabrication layers of a transistor with MS junction (Schottky junction).
Q: Draw the fabrication layers of a transistor with MS junction (Schottky
junction).
+
C/E,
4
TA
b
IA
+ 2V
C/E
2
+1
-
C
+ V3 -
C/EU
-
ча
- V4 +
e
+
/E3 V2
12V
a
(a) Find currents L, L2 and is
(b)
Find Voltages V, V2, V3 and V4
-
2A
CIEG
For each circuit element and the two sources state whether they are
ABSORBING SUPPLYING pores and how much poner 13 absorbed
or supplied.
+
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.