3-23 Predict which ions are stable:
(a)
(b)
(c)
(d)
(e)
(f)
Interpretation:
Whether
Concept Introduction:
Octet rule: generally all atoms will lose, gain or share electrons to attain 8 valence electrons; the electronic configuration of the nearest noble element.
Duet rule: generally some atoms like hydrogen, lithium, beryllium will lose, gain or share electrons to attain 2 valence electrons; the electronic configuration of the nearest noble element like helium.
Answer to Problem 3.23P
Explanation of Solution
The atomic number or number of electrons of
When
The electronic configuration of the nearest noble element like helium, neon argon is the stable configuration hence the
Interpretation:
Whether
Concept Introduction:
Octet rule: generally all atoms will lose, gain or share electrons to attain 8 valence electrons; the electronic configuration of the nearest noble element.
Duet rule: generally some atoms like hydrogen, lithium, beryllium will lose, gain or share electrons to attain 2 valence electrons; the electronic configuration of the nearest noble element like helium.
Answer to Problem 3.23P
Explanation of Solution
The atomic number or number of electrons of
When
The electronic configuration of the nearest noble element like helium, neon argon is the stable configuration hence the
Interpretation:
Whether
Concept Introduction:
Octet rule: generally all atoms will lose, gain or share electrons to attain 8 valence electrons; the electronic configuration of the nearest noble element.
Duet rule: generally some atoms like hydrogen, lithium, beryllium will lose, gain or share electrons to attain 2 valence electrons; the electronic configuration of the nearest noble element like helium.
Answer to Problem 3.23P
Explanation of Solution
The atomic number or number of electrons of
When
The electronic configuration of the nearest noble element like helium, neon argon is the stable configuration hence the
Interpretation:
Whether
Concept Introduction:
Octet rule: generally all atoms will lose, gain or share electrons to attain 8 valence electrons; the electronic configuration of the nearest noble element.
Duet rule: generally some atoms like hydrogen, lithium, beryllium will lose, gain or share electrons to attain 2 valence electrons; the electronic configuration of the nearest noble element like helium.
Answer to Problem 3.23P
Explanation of Solution
The atomic number or number of electrons of
When
The electronic configuration of the nearest noble element like helium, neon argon is the stable configuration hence the
Interpretation:
Whether
Concept Introduction:
Octet rule: generally all atoms will lose, gain or share electrons to attain 8 valence electrons; the electronic configuration of the nearest noble element.
Duet rule: generally some atoms like hydrogen, lithium, beryllium will lose, gain or share electrons to attain 2 valence electrons; the electronic configuration of the nearest noble element like helium.
Answer to Problem 3.23P
Explanation of Solution
The atomic number or number of electrons of
When
The electronic configuration of the nearest noble element like helium, neon argon is the stable configuration hence the
Interpretation:
Whether
Concept Introduction:
Octet rule: generally all atoms will lose, gain or share electrons to attain 8 valence electrons; the electronic configuration of the nearest noble element.
Duet rule: generally some atoms like hydrogen, lithium, beryllium will lose, gain or share electrons to attain 2 valence electrons; the electronic configuration of the nearest noble element like helium.
Answer to Problem 3.23P
Explanation of Solution
The atomic number or number of electrons of
When
The electronic configuration of the nearest noble element like helium, neon argon is the stable configuration hence the
Want to see more full solutions like this?
Chapter 3 Solutions
Student Solutions Manual for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th
- The table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which is the most brittle and which is the most tough (or most resistant). Breaking strength Elastic modulus Material Yield strength Tensile strength Breaking strain A (MPa) 415 (MPa) (MPa) (GPa) 550 0.15 500 310 B 700 850 0.15 720 300 C Non-effluence fracture 650 350arrow_forwardPlease correct answer and don't used hand raitingarrow_forwardMaterials. The following terms are synonyms: tension, effort and stress.arrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe table shows the tensile stress-strain values obtained for various hypothetical metals. Based on this, indicate which material will be the most ductile and which the most brittle. Material Yield strength Tensile strength Breaking strain Breaking strength Elastic modulus (MPa) (MPa) (MPa) (GPa) A 310 340 0.23 265 210 B 100 120 0.40 105 150 с 415 550 0.15 500 310 D 700 850 0.14 720 210 E - Non-effluence fracture 650 350arrow_forward
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardConsider the following Figure 2 and two atoms that are initially an infinite distance apart, x =00, at which point the potential energy of the system is U = 0. If they are brought together to x = x, the potential energy is related to the total force P by dU dx = P Given this, qualitatively sketch the variation of U with x. What happens at x=x? What is the significance of x = x, in terms of the potential energy? 0 P, Force 19 Attraction Total Repulsion x, Distance Figure 2. Variation with distance of the attractive, repulsive, and total forces between atoms. The slope dP/dx at the equilibrium spacing xe is proportional to the elastic modulus E; the stress σb, corresponding to the peak in total force, is the theoretical cohesive strength.arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning