Electrical Engineering: Principles & Applications (7th Edition)
7th Edition
ISBN: 9780134484143
Author: Allan R. Hambley
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 3.15P
A constant (dc) current
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In the circuit shown in the following figure(Figure 1) the capacitor has
capacitance 19μF and is initially uncharged. The resistor Ro has
resistance 11 2. An emf of 84.0 V is added in series with the capacitor
and the resistor. The emf is placed between the capacitor and the switch,
with the positive terminal of the emf adjacent to the capacitor. The small
circuit is not connected in any way to the large one. The wire of the small
circuit has a resistance of 1.1 /m and contains 25 loops. The large
circuit is a rectangle 2.0 m by 4.0 m, while the small one has dimensions
a = 13.0 cm and b = 18.0 cm. The distance c is 5.0 cm. (The figure is
not drawn to scale.) Both circuits are held stationary. Assume that only the
wire nearest the small circuit produces an appreciable magnetic field
through it.
Part A
The switch is closed at t = 0. When the current in the large circuit is 4.70 A, what is the magnitude of the induced current in the small circuit?
Express your answer with the appropriate…
Find the charge on each of the capacitors in the figure below.
A rectangular circuit contains a battery and four capacitors. A 24.0 V battery is on its left side, where the positive terminal is above the negative terminal. Its right side splits into two parallel vertical branches below the top right corner of the circuit, where there is a 1.00 µF capacitor on the left branch and a 5.00 µF capacitor on the right branch. The branches recombine, the side continues down, and then splits again into two parallel vertical branches. There is an 8.00 µF capacitor on the left branch and a 4.00 µF capacitor on the right branch. These branches then recombine and the side continues down to reach the bottom right corner of the circuit.
1.0-µF capacitor
5.0-µF capacitor
8.0-µF capacitor
4.0-µF capacitor
Please draw the problem and answer, thanks for the help.
A capacitor is made of 2 rectangular metal plates with side length of 3 cm x 6 cm separated by a distance of 2.36 cm with water in between the plates. The capacitor has a voltage of 110 v and is not connected to a battery. Calculate the capacitance. What is the new capacitance if we replace water with a new dielectric material with a constant of 3.75 in between the plates? What is the new voltage? What is the charge on each plate?
Chapter 3 Solutions
Electrical Engineering: Principles & Applications (7th Edition)
Ch. 3 - What is a dielectric material? Give two examples.Ch. 3 - Briefly discuss how current can flow “through” a...Ch. 3 - What current flows through an ideal capacitor if...Ch. 3 - Describe the internal construction of capacitors.Ch. 3 - A voltage of 50 V appears across a 10F capacitor....Ch. 3 - A 2000F capacitor, initially charged to 100V, is...Ch. 3 - A 5F Capacitor ischarged to 1000 V. Determine the...Ch. 3 - The voltage across a 10F capacitor is given by v...Ch. 3 - The voltage across a 1F capacitor is given by...Ch. 3 - Prior to t = 0, a 100F capacitance is uncharged...
Ch. 3 - The current through a 0.5F capacitor is shown in...Ch. 3 - Determine the capacitor voltage, power, and stored...Ch. 3 - A current given by i(t)=Imcos(t) flows through a...Ch. 3 - The current through a 3F capacitor is shown in...Ch. 3 - A constant (dc) current i(t)=3 mA flows into a 50F...Ch. 3 - The energy stored in a 2F capacitor is 200 J and...Ch. 3 - At t=t0 the voltage across a certain capacitance...Ch. 3 - An unusual capacitor has a capacitance that is a...Ch. 3 - For a resistor, what resistance corresponds to a...Ch. 3 - Suppose we have a very large capacitance (ideally,...Ch. 3 - We want to store sufficient energy in a 001-F...Ch. 3 - A 100F capacitor has a voltage given by v(t)=1010...Ch. 3 - How are capacitances combined in series and in...Ch. 3 - Find the equivalent capacitance for each of the...Ch. 3 - Find the equivalent capacitance between terminals...Ch. 3 - A network has a 5F capacitance in series with the...Ch. 3 - What are the minimum and maximum values of...Ch. 3 - Two initially uncharged capacitors C1=15F and...Ch. 3 - Suppose that we are designing a cardiac pacemaker...Ch. 3 - Suppose that we have two 100F capacitors One is...Ch. 3 - Determine the capacitance of a parallel-plate...Ch. 3 - A 100-pF capacitor is constructed of parallel...Ch. 3 - We have a parallel-plate capacitor with plates of...Ch. 3 - Suppose that we have a 1000-pF parallel-plate...Ch. 3 - Two 1F capacitors have an initial voltage of 100 V...Ch. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - A parallel-plate capacitor is used as a vibration...Ch. 3 - A 0.1F capacitor has a parasitic series resistance...Ch. 3 - Prob. 3.40PCh. 3 - Briefly discuss how inductors are constructed.Ch. 3 - The current flowing through an inductor is...Ch. 3 - If the current through an ideal inductor is...Ch. 3 - Briefly discuss the fluid-flow analogy for an...Ch. 3 - The current flowing through a 2-H inductance is...Ch. 3 - The current flowing through a 100-mH inductance is...Ch. 3 - The current flowing through a 2-H inductance is...Ch. 3 - The voltage across a 2-H inductance is shown in...Ch. 3 - The voltage across a 10 H inductance is given by...Ch. 3 - A 2-H inductance has i(0) = 0 and v(t)=texp(t) for...Ch. 3 - A constant voltage of 10V is applied to a 50H...Ch. 3 - At t = 0, the current flowing in a 05-H inductance...Ch. 3 - The current through a 100-mH inductance is given...Ch. 3 - Prior to t= 0, the current in a 2-H inductance is...Ch. 3 - At t= 0, a constant 5-V voltage source is applied...Ch. 3 - Prob. 3.56PCh. 3 - Al t= 5 s, the energy stored in a 2-H inductor is...Ch. 3 - What value of inductance (having zero initial...Ch. 3 - To what circuit element does a very large...Ch. 3 - The voltage across an inductance L is given by...Ch. 3 - Discuss how inductances are combined in series and...Ch. 3 - Determine the equivalent inductance for each of...Ch. 3 - Find the equivalent inductance for each of the...Ch. 3 - What is the maximum inductance that can be...Ch. 3 - Suppose we want to combine (in series or in...Ch. 3 - Prob. 3.66PCh. 3 - Two inductances L1=1H and L2=2H are connected in...Ch. 3 - A 10-mH inductor has a parasitic series resistance...Ch. 3 - Draw the equivalent circuit for a real inductor,...Ch. 3 - Suppose that the equivalent circuit shown in...Ch. 3 - Consider the circuit shown in Figure P3.71 in...Ch. 3 - The circuit shown in Figure P3.72 has...Ch. 3 - Describe briefly the physical basis for mutual...Ch. 3 - The mutually coupled inductances in Figure P3.74...Ch. 3 - Repeat Problem P3.74 with the dot placed at the...Ch. 3 - a. Derive an expression for the equivalent...Ch. 3 - Consider the parallel inductors shown in Figure...Ch. 3 - Consider the mutually coupled inductors shown in...Ch. 3 - Mutually coupled inductances have...Ch. 3 - The current through a 200-mH inductance is given...Ch. 3 - A 1-H inductance has iL(0)=0 and vL(t)=texp(t) for...Ch. 3 - The current flowing through a 10F capacitor having...Ch. 3 - Determine the equivalent capacitance Ceq for...Ch. 3 - A certain parallel-plate capacitor has plate...Ch. 3 - A 2-mH inductance has iab=0.3sin(2000t)A . Find an...Ch. 3 - Determine the equivalent inductance Leq between...Ch. 3 - Given that vc(t)=10sin(1000t)V , find vs(t)in the...Ch. 3 - Prob. 3.7PTCh. 3 - The current flowing through a 20F capacitor having...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- You are an electrician working in an industrial plant. You discover that the problem with a certain machine is a defective capacitor. The capacitor is connected to a 240-volt AC circuit. The information on the capacitor reveals that it has a capacitance value of 10 mF and a voltage rating of 240 VAC. The only 10-mF AC capacitor in the storeroom is marked with a voltage rating of 350 WVDC. Can this capacitor be used to replace the defective capacitor? Explain your answer.arrow_forwardThree capacitors having capacitance values of 20F,40F, and 50F are connected in parallel to a 60 - Hz power line. An ammeter indicates a circuit current of 8.6 amperes. How much current is flowing through the 40F capacitor?arrow_forwardYou are working in an industrial plant. You have been instructed to double the capacitance connected to a machine. The markings on the capacitor, however, are not visible. The capacitor is connected to 560 volts and an ammeter indicates a current of 6 amperes flowing to the capacitor. What size capacitor should be connected in parallel with the existing capacitor? What is the minimum AC voltage rating of the new capacitor? What is the minimum DC voltage rating of the new capacitor? What is the minimum KVAR size that can be used in this installation?arrow_forward
- You find that a 25-F capacitor connected to 480 VAC is defective. The storeroom has no capacitors with a 480-VAC rating. However, you find two capacitors rated at 50 F and 370 VAC. Can these two capacitors be connected in such a manner that they can replace the defective capacitor? If yes, explain how they are connected and why the capacitors will not be damaged by the lower voltage rating. If no, explain why they cannot be used without damaging the capacitor.arrow_forwardA postage stamp mica capacitor has the following color marks starting at the upper left dot: yellow, violet, brown, green, no color, and blue. What are the capacitance value, tolerance, and voltage rating of this capacitor?arrow_forwarda utility company plans to connect a total of 20 uf capacitance to a 7200 v line at 60 hertz to make this connection four capacitors will be connected in series what is the capacitance of each capacitor. the ac voltage of each capacitor and the current flow through the circuit.arrow_forward
- Please show all work and highlight or circle your answers for parts d, e and f. Thank youarrow_forwardPlease draw the problem and answer, thank you. A capacitor is made of 2 rectangular metal plates with side length of 3 cm x 6 cm separated by a distance of 2.36 cm with water in between the plates. The capacitor has a voltage of 110 v and is not connected to a battery. Calculate the capacitance. What is the new capacitance if we replace water with a new dielectric material with a constant of 3.75 in between the plates? What is the new voltage? What is the charge on each plate?arrow_forwardPlease show all work and highlight or circle your answers for parts a,b and c. Thank youarrow_forward
- Five capacitors are connected across a potential difference Vab as shown in the figure. Because of the dielectrics used, each capacitor will break down if the potential across it exceeds 30.0 V. The largest that Vab can be without damaging any of the capacitors is closest to 15 µF 45 µF a Vab 5.0 µF 10.0 µF 25 µFarrow_forwardSwitch S in in the figure is closed at time t = 0, to begin charging an initially uncharged capacitor of capacitance C= 17.9 µF through a resistor of resistance R = 22.7 Q. At what time is the potential across the capacitor equal to that across the resistor? Number i Units S R Carrow_forwardA 150 µF and 100 µF capacitors are connected in series and across a 100 sin (wt + 30*) voltage. Write the equation of the current in mA. 25wsin(wt+30') 6wsin(wt+30') 25wsin(wt+120') 6wsin(wt+120')arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Capacitors Explained - The basics how capacitors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=X4EUwTwZ110;License: Standard YouTube License, CC-BY