Concept explainers
Distinguish between the terms electronegativity versus
Interpretation: The terms electronegativity versus electron affinity, covalent bond versus ionic bond and pure covalent bond versus polar covalent bond need to be distinguished. The types of bonds in terms of electronegativity difference need to be characterized. The reason for the formation of ionic and covalent bonds needs to be stated.
Concept introduction: The tendency of an atom to attract a bonding electron pair is termed electronegativity. The amount of energy released in adding an electron to a neutral atom or molecule in the gaseous state leading to the formation of a negative ion is electron affinity. The transfer of one or more electrons to a non-metal from a metal is termed as the formation of an ionic bond while a covalent bond is formed by two electrons shared between two atoms.
To determine: The distinction between the given terms the characterization of the types of bonds in terms of the electronegativity difference. The justification of the formation of an ionic and covalent bond.
Answer to Problem 1RQ
Answer
The required explanations have been rightfully stated.
Explanation of Solution
To determine: The distinction between the terms electronegativity versus electron affinity.
The tendency of an atom in a molecule by which it attracts the electrons towards itself in case of a covalent bond is termed as electronegativity. It is denoted by the symbol X. This was first proposed by Linus Pauling in the year 1932. The measurement of electronegativity is not possible directly and has to be calculated from other atomic or molecular properties.
While the energy change
To determine: The distinction between the terms covalent bond versus ionic bond
A type of chemical bond characterized by the sharing of pairs of electrons between the atoms is termed as a covalent bond.
While the ionic bond is one that is formed through the electrostatic attraction between the metal and the non-metal ions.
To determine: The distinction between the terms pure covalent bond versus polar covalent bond
When two atoms having the same electron attracting powers or electronegativities form a covalent bond, this type of bond is termed as a pure covalent bond.
And when two atoms having the different electron attracting powers or electronegativities form a covalent bond, this type of bond is termed as a polar covalent bond. In this case the displacement of the shared pair of electrons toward one of the atoms takes place.
To determine: Characterization of the types of bonds in terms of the electronegativity difference
With respect to the electronegativity difference, the formation of two binds takes place. When the electronegativity difference among the atoms exceeds 1.7, an ionic bond is formed while a covalent bond is formed if this difference is less than 1.7
To determine: The justification of the formation of an ionic and covalent bond energetically.
The formation of these two types of bonds is energetically favored as in these cases the energy of the products is somewhat less than that of the reactants resulting in the stability of the products formed.
The tendency of an atom in a molecule by which it attracts the electrons towards itself in case of a covalent bond is termed as electronegativity. The energy change when an electron is added to a neutral atom or molecule in the gaseous sate is termed electron affinity.
The chemical bond characterized by the sharing of pairs of electrons between the atoms while an ionic bond is formed through the electrostatic attraction between the metal and the non-metal ions
The atoms having the same electron attracting powers or electronegativities a pure covalent bond while the bond formed by two atoms having the different electron attracting powers is a polar covalent bond
With respect to the electronegativity difference, the formation of two binds takes place, ionic and covalent.
The energy of the products is somewhat less than that of the reactants. Hence, the formation of these two types of bonds is energetically favored.
Want to see more full solutions like this?
Chapter 3 Solutions
Chemistry: An Atoms First Approach
- Methylcyanoacrylate is the active ingredient in super glues. Its Lewis structure is In this molecule, which is the (a) weakest carbon-containing bond? (b) strongest carbon-containing bond? (c) most polar bond?arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forward• define electronegativity and state how electronegativity varies with position in the periodic table.arrow_forward
- hy is there an octet rule (and what does actet mean) in writing Lewis structures?arrow_forwardClassify each bond as nonpolar covalent or polar covalent or state that ions are formed. (a) SH (b) PH (c) CF (d) CClarrow_forwardWhy do sodium ion and choride ion form a compound? A) The energy of the formation of the negative chloride is overcome by the energy of the formation of the positive sodium ion. B) The lattice energy between the positive sodium and the negative chloride ions overcome the endothermic formation of the ions C)The energy of the formation of the positive sodium ion is overcome by the energy of the formation of the negative chloride ion. D) The energy of the formation of the positive sodium ion is canceled by the formation of the negative chloride ion.arrow_forward
- Which types of bonds are formed when atoms with different electronegativities are bonded?arrow_forwardIn chemical reactions, heat is converted into chemical energy (the potential energy stored in chemical bonds) or vice versa. Bond energy is the energy required to break one mole of the bond in the gas phase. Since it takes energy to break a bond, bond energies are always positive. Conversely, energy is released when bonds are formed. Thus, the enthalpy change for a reaction can be approximated from Part A Calculate the bond energy per mole for breaking all the bonds in methane, CH4. ΔΗ Σ(ΔΗ breaking) + Σ(ΔΗ forming) Express your answer to four significant figures and include the appropriate units. where H represents bond energies for the breaking (positive bond energy) or forming (negative bond energy) of a bond and Hrxn represents the overall enthalpy for the • View Available Hint(s) reaction. Use the table to answer questions about bond energies. HẢ Bond energy Bond (kJ/mol ) Value Units AHCH, = C-C 347 C=C 611 Submit Сн 414 C-O 360 Part B C=OinCO2 799 O-0 142 Calculate the bond…arrow_forwardPlease answer both questions as they are calculated together but just a heads up they are different questions. Thank you for helping mearrow_forward
- Please answer both questions as they are calculated together but just a heads up they are different questions. Thank you for helping mearrow_forwardThe table below includes the bond enthalpy (the energy required to separate the diatomic molecule into its atoms) and the bond length for each diatomic molecule. Diatomic Molecule Bond Enthalpy (kJ/mol) Bond Length (pm) Cl2 243 199 O2 498 121 N2 945 110 Identify the observed trend between bond enthalpy and number of shared electrons: as the number of electrons shared between two atoms increases, the bond enthalpy ( increases / decreases / remains unchanged ). Identify the observed trend between bond length and number of shared electrons: as the number of electrons shared between two atoms increases, the bond length ( increases / decreases / remains unchanged ).arrow_forwardWhen atoms react to form chemical bonds, only the electrons in the outermost or valence shell are involved. Thus, the configuration of the valence shell is important in bond formation. In order to place emphasis on the electrons in the outermost shell, a special symbol known as Lewis diagram (also called electron-dot structures) is used. Assuming that, element P has seven electrons, while element Q has eight electrons. When element P shared electrons with element Q, it will form an anion. Illustrate a 'dot and cross' diagram to show the bonding between element P and element Q. Based on the diagram, indicate the shape and the angle bond. Explain your answer.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning