(a)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of of sulfur difluoride
(a)
Explanation of Solution
Sulfur belongs to the Group
Fluorine is a non-metal of the
Oxidation state
In
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(b)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of sulfur hexafluoride
(b)
Explanation of Solution
Sulfur belongs to the Group
Fluorine is a non-metal of the
Oxidation state
In
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(c)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of
(c)
Explanation of Solution
Sodium belongs to the Group
Dihydrogen phosphate is an anion having oxidation state
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(d)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of lithium nitride
(d)
Explanation of Solution
Lithium belongs to the Group
Nitrogen is a non-metal of the
Oxidation state
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(e)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of chromium (III) carbonate.
(e)
Explanation of Solution
Chromium belongs to the Group
Carbonate is an anion having oxidation state
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(f)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of tin (II) fluoride.
(f)
Explanation of Solution
Tin belongs to the Group
Fluorine is a non-metal of the
Oxidation state
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(g)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of ammonium acetate.
(g)
Explanation of Solution
The oxidation state of ammonium
Acetate
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(h)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of ammonium hydrogen sulfate.
(h)
Explanation of Solution
The oxidation state of ammonium
Hydrogen sulfate
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(i)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of cobalt (III) nitrate.
(i)
Explanation of Solution
The oxidation state of cobalt
Nitrate
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(j)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of mercury (I) chloride.
(j)
Explanation of Solution
The oxidation state of mercury
Chloride
Two mercury and chlorine ions is joined to form mercury (I) chloride.
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(k)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of potassium chlorate.
(k)
Explanation of Solution
The oxidation state of potassium
Chlorate
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
(l)
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
To determine: The formula of sodium hydride.
(l)
Explanation of Solution
The oxidation state of sodium
Hydride
So, the formula of the given compound is
The formula of ionic compound is given such that positive ion (cation) always written first and negative ion written second.
Want to see more full solutions like this?
Chapter 3 Solutions
Chemistry: An Atoms First Approach
- Indicate the correct answer.a) In boranes, the B-B bonds are the most reactive.b) The B-H-B bonds are the reactive centers in the B2H6 molecule.arrow_forwardIn boranes, the B-B bonds are the most reactive.arrow_forwardThe B-H-B bonds are the reactive centers in the B2H6 molecule. Correct?arrow_forward
- Living By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning