Referring to the circuit depicted in Fig. 3.45, count the number of (a) nodes;
(b) elements; (c) branches.
FIGURE 3.45
(a)
Find the number of nodes in the circuit.
Answer to Problem 1E
Number of nodes in the circuit is
Explanation of Solution
The circuit diagram is redrawn as shown in Figure 1.
Refer to the redrawn Figure 1.
A point where two or more branches have common connection is known as node.
In Figure 1 two branches are connected at point
Conclusion:
Thus, the number of nodes in the circuit is
(b)
Find the number of elements in the circuit.
Answer to Problem 1E
Number of elements in the circuit is
Explanation of Solution
Refer to the redrawn Figure 1.
Each component (either passive or active device) present in the electrical circuit is an element.
There are
Conclusion:
Thus, the number of elements in the circuit is
(c)
Find the number of branches in the circuit.
Answer to Problem 1E
Number of branches in the circuit is
Explanation of Solution
Refer to the redrawn Figure 1.
Each electrical element or device present in the circuit is known as branch.
There are
Conclusion:
Thus, the number of branches in the circuit is
Want to see more full solutions like this?
Chapter 3 Solutions
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
- Only expert should attemptarrow_forwardAnswer this question and show me step by step using by Hand not Ai i need exarrow_forwardQ.3) You want to transmit the message &$ a. Encode this textual message into a sequence of bits, using 6-bit ASCII coding, followed by a seventh bit for error detection, per character. The seventh bit is chosen so that the total sum of bits using XNOR gate is zero How many total bits are there in the message? b. Assuming the bit duration 10 ms, plot the Dicode RZ line code. c. Assuming the bit duration = 10 ms, plot the Bi--M code. d. Assuming the bit duration 10 ms, plot the Miller line code.arrow_forward
- Q1: A. Express the sequences shown in Figures. 1 in terms of unit step functions: -4-3-20 1 2 3 4 5 (a) x[m] -4-3-2-1 1 2 3 C (b)arrow_forwardcontrol system Peak Time Rise Time Overshoot Settling Timearrow_forwardThe critical magnetic flux density of a long superconducting wire is 10 mT at 0K. a) Calculate the critical current of the wire if the radius is 1 mm. b) What is the critical current density of the wire if the penetration depth is 500 nm in 0K? c) If the penetration depth is 400 nm at 5K what is the critical temperature of this superconductor.arrow_forward
- Note: Please solve the question on the paper. The forward-path transfer function of a unity-feedback control system is G(s)=k/(s+5)^3 1. Sketch the Nyquist plot of G(jw)H(jw) for w=0 to w=∞ 2. Determine the range of.(0arrow_forwardNeed Handwritten solution. Do not use AI or chatgptarrow_forwardcontrol system root locus do for all stepsarrow_forward
- DO BY HAND NOT USING CHATGPT OR ANY AIarrow_forwardThe Bode Plote (a) Find out how much the loop gain must be changed from its nominal value if the phase margini s 45°. (b) Find out how much the gain k must be changed from its nominal value ift he system become marginally stable. Note: Please explain what the result would be and mark the drawing.arrow_forwardA single superconducting coaxial cable could carry a power of 1 GW (the output of a large power plant) at 200 kV, DC, over a distance of 1000 km without loss. An inner wire of radius a = 2.40 cm, made from the superconductor Nb3Sn, carries the current (I) in one direction. A surrounding superconducting cylinder of radius b = 4.54 cm would carry the return current (I). a) In such a system, what is the magnetic field at the surface of the inner conductor (in mT)? b) What is the magnetic field at the inner surface of the outer conductor (in mT). c) How much energy would be stored in the magnetic field in the space between the conductors in a 1000 km superconducting line (in MJ)? d) What is the pressure exerted on the outer conductor due to the current in the inner conductor (in Pa)?arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,