University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 13CQ
A nonreflective coating like the one described in Example 3.3 works ideally for a single wavelength and for perpendicular incidence. What happens for other wavelengths and other incident directions? Be specific.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please show all solutions
You are directing a laser at a diffraction grating with 300 line per mm to project diffracted images onto a wall to measure distances for each order and calculate their associated angles and wavelenths. If the grating used had actually contained fewer lines per meter, what differences would you expect? Explain.
The spacing between principal planes in a NaCl crystal is 2.82x10^-10 m. It is found that a first order Bragg reflection of a monochromatic X-ray beam occurs at an angle of 10°. From this information we can say that the wavelength λ of the X-rays and the angle θ2 corresponding to the second-order spectrum are:Choose an answer between the letters A and D from the image below and justify your answer
Chapter 3 Solutions
University Physics Volume 3
Ch. 3 - Check Your Understanding In the system used in the...Ch. 3 - Check Your Understanding Going further with...Ch. 3 - Check Your Understanding Although m, the number of...Ch. 3 - Young’s double-slit experiment breaks a single...Ch. 3 - Is it possible to create a experimental setup in...Ch. 3 - Why won’t two small sodium lamps, held close...Ch. 3 - Suppose you use the same double slit to perform...Ch. 3 - Why is monochromatic light used in the double slit...Ch. 3 - What effect does increasing the wedge angle have...Ch. 3 - How is the difference in paths taken by two...
Ch. 3 - Is there a phase change in the light reflected...Ch. 3 - In placing a sample on a microscope slide, a glass...Ch. 3 - Answer the above question if the fluid between the...Ch. 3 - While contemplating the food value of a slice of...Ch. 3 - An inventor notices that a soap bubble is dark at...Ch. 3 - A nonreflective coating like the one described in...Ch. 3 - Why is it much more difficult to see interference...Ch. 3 - Describe how a Michelson interferometer can be...Ch. 3 - At what angle is the first-order maximum for...Ch. 3 - Calculate the angle for the third-order maximum of...Ch. 3 - What is the separation between two slits for which...Ch. 3 - Find the distance between two slits that produces...Ch. 3 - Calculate the wavelength of light that has its...Ch. 3 - What is the wavelength of light falling on double...Ch. 3 - At what angle is the fourth-order maximum for the...Ch. 3 - What is the highest-order maximum for 400-nm light...Ch. 3 - Find the largest wavelength of light falling on...Ch. 3 - What is the smallest separation between two slits...Ch. 3 - (a) What is the smallest separation between two...Ch. 3 - (a) If the first-order maximum for monochromatic...Ch. 3 - Shown below is a double slit located a distance x...Ch. 3 - Using the result of the preceding problem, (a)...Ch. 3 - Using the result of the problem two problems...Ch. 3 - In a double-slit experiment, the fifth maximum is...Ch. 3 - The source in Young’s experiment emits at two...Ch. 3 - If 500-nm and 650-nm light illuminates two slits...Ch. 3 - Red light of wavelength of 700 nm falls on a...Ch. 3 - Ten narrow slits are equally spaced 0.25 mm apart...Ch. 3 - The width of bright fringes can be calculated as...Ch. 3 - For a three-slit interference pattern, find the...Ch. 3 - What is the angular width of the central fringe of...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...Ch. 3 - Calculate the minimum thickness of an oil slick on...Ch. 3 - Find the minimum thickness of a soap bubble that...Ch. 3 - A film of soapy water (n=1.33) on top of a plastic...Ch. 3 - What are the three smallest non-zero thicknesses...Ch. 3 - Suppose you have a lens system that is to be used...Ch. 3 - (a) As a soap bubble thins it becomes dark,...Ch. 3 - To save money on making military aircraft...Ch. 3 - A Michelson interferometer has two equal arms. A...Ch. 3 - What is the distance moved by the traveling mirror...Ch. 3 - When the traveling mirror of a Michelson...Ch. 3 - In a Michelson interferometer, light of wavelength...Ch. 3 - A chamber 5.0 cm long with flat, parallel windows...Ch. 3 - For 600-nm wavelength light and a slit separation...Ch. 3 - If the light source in the preceding problem is...Ch. 3 - Red light (=710.nm) illuminates double slits...Ch. 3 - Two sources as in phase and emit waves with =0.42...Ch. 3 - Two slits 4.0106 m apart are illuminated by light...Ch. 3 - Suppose that the highest order fringe that can be...Ch. 3 - The interference pattern of a He-Ne laser light...Ch. 3 - Young’s double-slit experiment is performed...Ch. 3 - A double-slit experiment is to be set up so that...Ch. 3 - An effect analogous to two-slit interference can...Ch. 3 - A hydrogen gas discharge lamp emits visible light...Ch. 3 - Monochromatic light of frequency 5.51014 Hz falls...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - A transparent film of thickness 250 nm and index...Ch. 3 - An intensity minimum is found for 450 nm light...Ch. 3 - A thin film with n=1.32 is surrounded by air. What...Ch. 3 - Repeat your calculation of the previous problem...Ch. 3 - After a minor oil spill, a think film of oil...Ch. 3 - A microscope slide 10 cm long is separated from a...Ch. 3 - Suppose that the setup of the preceding problem is...Ch. 3 - A thin wedge filled with air is produced when two...Ch. 3 - Two identical pieces of rectangular plate glass...Ch. 3 - Two microscope slides made of glass are...Ch. 3 - A good quality camera “lens” is actually a system...Ch. 3 - Constructive interference is observed from...Ch. 3 - A soap bubble is blown outdoors. What colors...Ch. 3 - A Michelson interferometer with a He-Ne laser...Ch. 3 - An experimenter detects 251 fringes when the...Ch. 3 - A Michelson interferometer is used to measure the...Ch. 3 - A 5.08-cm-long rectangular glass chamber is...Ch. 3 - Into one arm of a Michelson interferometer, a...Ch. 3 - The thickness of an aluminum foil is measured...Ch. 3 - The movable mirror of a Michelson interferometer...Ch. 3 - In a thermally stabilized lab, a Michelson...Ch. 3 - A 65-fringe shift results in a Michelson...Ch. 3 - Determine what happens to the double-slit...Ch. 3 - Fifty-one narrow slits are equally spaced and...Ch. 3 - A film of oil on water will appear dark when it is...Ch. 3 - Figure 3.14 shows two glass slides illuminated by...Ch. 3 - Figure 3.14 shows two 7.50-cm-long glass slides...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A swan on a lake gets airborne by flapping its wings and running on top of the water. (a) If the swan must reac...
College Physics
A 2-turn planer loop of flexible wire is placed inside a long solenoid of n turns per meter that canes a consta...
University Physics Volume 2
l. Suppose you have the uniformly charged cube in FIGURE Q24.1. Can you use symmetry alone to deduce the shape ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
The proton is a composite particle composed of three quarks, all of which are either up quarks (u; charge +23e)...
Essential University Physics: Volume 2 (3rd Edition)
1. When is energy most evident?
Conceptual Physics (12th Edition)
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The structure of the NaCl crystal forms reflecting planes 0.541 nm apart. What is the smallest angle, measured from these planes, at which X-ray diffraction can be observed, if X-rays of wavelength 0.085 nm are used?arrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forward9. Consider TE oblique incidence with 30 degree incidence angle from the air (n=1) to the semiconduc tor (n=3.5). The optical wavelength is 1.5 µm. We want to coat a thin film on the semiconductor to achieve zero reflection for this particular case. The coating material is with the refractive index n and the thickness d. (1) What is the power reflectivity of the interface without the coating. (2) Please determine the required d and n to achieve zero reflectivity.arrow_forward
- On a certain crystal, a first-order X-ray diffraction maximum is observed at an angle of 33.30 relative to its surface, using an x-ray source of unknown wavelength. Additionally, when illuminated with a different x-ray, this time of known.wavelength 0.205 nm, a second-order maximum is detected at 22.20. Determine the spacing between the reflecting planes.. Select one: O a. 0.19nm O b. 1.84nm O c. 0.27nm O d. 0.54nmarrow_forwardPlease asaparrow_forwardIncident white light in air (nair=1) encounters a a piece of plastic as shown in the figure below. The index of refraction for blue light is ng=1.36 and the index of refraction for red light is nr=1.28. After the light passes through the fırst boundary, the blue light undergoes total internal reflection when it encounters the plastic to air boundary from the inside at exactly the critical angle. The red light gets refracted when it encounters the plastic to air boundary from the inside. a) Draw and label a qualitative ray diagram for the light rays for the whole process. b) Find the incident angle of the white light. (you have to really think about what is incident and what is transmitted) c) Using the result from (b), find the angle the red light exits the plastic (no additional points will be taken off if your first result is incorrect). n. 'airarrow_forward
- A telescope can be used to enlarge the diameter of a laser beam and limit diffraction spreading. The laser beam is sent through the eyepiece and out the objective, and can then be projected onto a satellite or the Moon. a. If this is done with the Mount Wilson telescope, producing a 2.1 m diameter beam of 690 nm light, what is the minimum angular spread, in radians, of the beam? b. Neglecting atmospheric effects, what is the diameter of the spot this beam would make on the Moon, assuming a lunar distance of 3.84×108 m?arrow_forwardB1arrow_forwardAssume a transparent rod of diameter d = 5.60 µm has an index of refraction of 1.31. Determine the maximum angle for which the light rays incident on the end of the rod in the figure below are subject to total internal reflection along the walls of the rod. Your answer defines the size of the cone of acceptance for the rod. 0arrow_forward
- For this problem, I know the answer is E but I do not know how to get there. Seeing the steps and equations would be much appreciated. Thank youarrow_forwardIn the figure, first-order reflection from the reflection planes shown occurs when an x-ray beam of wavelength 0.820 nm makes an angle θ = 62.3˚ with the top face of the crystal. What is the unit cell size a0?arrow_forwardSubject: physicsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Polarization of Light: circularly polarized, linearly polarized, unpolarized light.; Author: Physics Videos by Eugene Khutoryansky;https://www.youtube.com/watch?v=8YkfEft4p-w;License: Standard YouTube License, CC-BY