University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 2CQ
Is it possible to create a experimental setup in which there is only destructive interference? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Describe Young’s double slit experiment to produce interference. Deduce an expression for the width of theinterference fringes.
The table below presents data gathered by students performing a double-slit experiment. The distance y from the central maximum to other maxima is given. The distance between the
slits is 0.0800 mm, and the distance to the screen is 2.20 m. The intensity of the central maximum is 6.90 x 10-5 W/m2. what is the intensity at y = 0.500 cm?
y (cm)
-4
-4.95
-3
-3.71
-2
-2.48
-1
-1.24
0.00
1
1.24
2.48
3
3.71
4.95
w/m2
Need Help?
Read It
A light source emits visible light of two wavelengths: λ = 400 nm and λ’ = 500 nm. The source is used ina double-slit interference experiment in which the length between the slits and the screen is L = 1.1 mand the spacing between the two slits is d = 1 mm.a) Find the separation distance between the third-order bright fringes for the twowavelengths. Do not use the small angle approximation.
b)What if we examine the entire interference pattern due to the two wavelengths and lookfor overlapping fringes? Are there any locations on the screen where the bright fringes from the twowavelengths overlap exactly?
Chapter 3 Solutions
University Physics Volume 3
Ch. 3 - Check Your Understanding In the system used in the...Ch. 3 - Check Your Understanding Going further with...Ch. 3 - Check Your Understanding Although m, the number of...Ch. 3 - Young’s double-slit experiment breaks a single...Ch. 3 - Is it possible to create a experimental setup in...Ch. 3 - Why won’t two small sodium lamps, held close...Ch. 3 - Suppose you use the same double slit to perform...Ch. 3 - Why is monochromatic light used in the double slit...Ch. 3 - What effect does increasing the wedge angle have...Ch. 3 - How is the difference in paths taken by two...
Ch. 3 - Is there a phase change in the light reflected...Ch. 3 - In placing a sample on a microscope slide, a glass...Ch. 3 - Answer the above question if the fluid between the...Ch. 3 - While contemplating the food value of a slice of...Ch. 3 - An inventor notices that a soap bubble is dark at...Ch. 3 - A nonreflective coating like the one described in...Ch. 3 - Why is it much more difficult to see interference...Ch. 3 - Describe how a Michelson interferometer can be...Ch. 3 - At what angle is the first-order maximum for...Ch. 3 - Calculate the angle for the third-order maximum of...Ch. 3 - What is the separation between two slits for which...Ch. 3 - Find the distance between two slits that produces...Ch. 3 - Calculate the wavelength of light that has its...Ch. 3 - What is the wavelength of light falling on double...Ch. 3 - At what angle is the fourth-order maximum for the...Ch. 3 - What is the highest-order maximum for 400-nm light...Ch. 3 - Find the largest wavelength of light falling on...Ch. 3 - What is the smallest separation between two slits...Ch. 3 - (a) What is the smallest separation between two...Ch. 3 - (a) If the first-order maximum for monochromatic...Ch. 3 - Shown below is a double slit located a distance x...Ch. 3 - Using the result of the preceding problem, (a)...Ch. 3 - Using the result of the problem two problems...Ch. 3 - In a double-slit experiment, the fifth maximum is...Ch. 3 - The source in Young’s experiment emits at two...Ch. 3 - If 500-nm and 650-nm light illuminates two slits...Ch. 3 - Red light of wavelength of 700 nm falls on a...Ch. 3 - Ten narrow slits are equally spaced 0.25 mm apart...Ch. 3 - The width of bright fringes can be calculated as...Ch. 3 - For a three-slit interference pattern, find the...Ch. 3 - What is the angular width of the central fringe of...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...Ch. 3 - Calculate the minimum thickness of an oil slick on...Ch. 3 - Find the minimum thickness of a soap bubble that...Ch. 3 - A film of soapy water (n=1.33) on top of a plastic...Ch. 3 - What are the three smallest non-zero thicknesses...Ch. 3 - Suppose you have a lens system that is to be used...Ch. 3 - (a) As a soap bubble thins it becomes dark,...Ch. 3 - To save money on making military aircraft...Ch. 3 - A Michelson interferometer has two equal arms. A...Ch. 3 - What is the distance moved by the traveling mirror...Ch. 3 - When the traveling mirror of a Michelson...Ch. 3 - In a Michelson interferometer, light of wavelength...Ch. 3 - A chamber 5.0 cm long with flat, parallel windows...Ch. 3 - For 600-nm wavelength light and a slit separation...Ch. 3 - If the light source in the preceding problem is...Ch. 3 - Red light (=710.nm) illuminates double slits...Ch. 3 - Two sources as in phase and emit waves with =0.42...Ch. 3 - Two slits 4.0106 m apart are illuminated by light...Ch. 3 - Suppose that the highest order fringe that can be...Ch. 3 - The interference pattern of a He-Ne laser light...Ch. 3 - Young’s double-slit experiment is performed...Ch. 3 - A double-slit experiment is to be set up so that...Ch. 3 - An effect analogous to two-slit interference can...Ch. 3 - A hydrogen gas discharge lamp emits visible light...Ch. 3 - Monochromatic light of frequency 5.51014 Hz falls...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - A transparent film of thickness 250 nm and index...Ch. 3 - An intensity minimum is found for 450 nm light...Ch. 3 - A thin film with n=1.32 is surrounded by air. What...Ch. 3 - Repeat your calculation of the previous problem...Ch. 3 - After a minor oil spill, a think film of oil...Ch. 3 - A microscope slide 10 cm long is separated from a...Ch. 3 - Suppose that the setup of the preceding problem is...Ch. 3 - A thin wedge filled with air is produced when two...Ch. 3 - Two identical pieces of rectangular plate glass...Ch. 3 - Two microscope slides made of glass are...Ch. 3 - A good quality camera “lens” is actually a system...Ch. 3 - Constructive interference is observed from...Ch. 3 - A soap bubble is blown outdoors. What colors...Ch. 3 - A Michelson interferometer with a He-Ne laser...Ch. 3 - An experimenter detects 251 fringes when the...Ch. 3 - A Michelson interferometer is used to measure the...Ch. 3 - A 5.08-cm-long rectangular glass chamber is...Ch. 3 - Into one arm of a Michelson interferometer, a...Ch. 3 - The thickness of an aluminum foil is measured...Ch. 3 - The movable mirror of a Michelson interferometer...Ch. 3 - In a thermally stabilized lab, a Michelson...Ch. 3 - A 65-fringe shift results in a Michelson...Ch. 3 - Determine what happens to the double-slit...Ch. 3 - Fifty-one narrow slits are equally spaced and...Ch. 3 - A film of oil on water will appear dark when it is...Ch. 3 - Figure 3.14 shows two glass slides illuminated by...Ch. 3 - Figure 3.14 shows two 7.50-cm-long glass slides...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
1. An object is subject to two forces that do not point in opposite directions. Is it possible to choose their ...
College Physics: A Strategic Approach (3rd Edition)
HOW DO WE KNOW? In this chapter, we focused on extensions and modifications of Mendelian principles and ratios....
Concepts of Genetics (12th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
CAUTION Why does the presence of extinct forms and transitional features in the fossil record support the patte...
Biological Science (6th Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A microwave of an unknown wavelength is incident on a single slit of width 6 cm. The angular width of the central peak is found to be 25°. Find the wavelength.arrow_forwardProblem 3: Suppose a double-slit interference pattern has its third minimum at an angle of 0.276° with slits that are separated by 270 µm. Randomized Variables 0 = 0.276° d=270 μm al Calculate the wavelength of the light in nm. λ=1arrow_forwardProblem 4: Suppose a double-slit interference pattern has its third minimum at an angle of 0.258° with slits that are separated by 319 um. Randomized Variables 0 = 0.258° d = 319 µm > A Calcula the wavelength of the light in nm. Gr De-arrow_forward
- In a double-slit interference experiment, interference fringes are observed on a distant screen. The width of both slits is then doubled without changing the distance between their centers. What happens to the spacing of the fringes? Explain.arrow_forwardSuppose that the two waves in the figure have wavelength 454 nm in air. What multiple of A gives their phase difference when they emerge if (a) n, - 1.59 and n₂-1.69, and L- 9.30 um: (b) n, - 1.71 and n₂ - 1.81, and L- 9.30 um; and (c) n; -1.68 and n₂-188, and L- 3.69 μm My M₁ (a) Number (b) Number (c) Number Units 'Units Unitsarrow_forwardA double slit experiment is set up such that the two slits are 1.00 cm apart and are placed 1.20 m from the screen on which the interference pattern will be formed. A monochromatic light source of frequency 6x10^14Hz is then shone onto the slits in order to create the expected pattern of light and dark fringes. Determine the separation of the bright fringes for this experimental set-up. answer = 60µmarrow_forward
- In two source interference, the maximum intensity occurs when a. the wavelength is half of the path difference b. the path difference is thrice of the wavelength c. both a and b d. neither a nor b e. cannot be determinedarrow_forwardSuppose a two-slit interference pattern from 605 nm orange light has its first maximum at an angle of 1.76°. This is a double-slit system already in problem formulation. a) What is the separation between two slits for the orange light in meters?arrow_forwardAnalysis of an interference effect in a clear solid shows that the wavelength of light in the solid is 381 nm. Knowing this light comes from a He-Ne laser and has a wavelength of 633 nm in air, is the substance fused quartz or flint glass? (The indices of refraction of fused quartz and flint glass are 1.458 and 1.66, respectively.)fused quartzflint glassarrow_forward
- m, and d= 3.00 x 10 m. (B) Determine the distance between adjacent bright fringes. Use the bright fringe equation again to find the distance between any adjacent bright fringes (here, those characterized by m and m + 1). AL AL (m+ 1) - AL Ay = y+1 m%3D (5.63 x 107 m)(1.20 m) - 2.25 cm 3.00 x 105 m LEARN MORE REMARKS This calculation depends on the angle 0 being small because the small angle approximation was implicitly used. The measurement of the position of the bright fringes yields the wavelength of light, which in turn is a signature of atomic processes, as is discussed in the chapters on modern physics. This kind of measurement therefore helped open the world of the atom. QUESTION Which of the following make the separation between fringes greater in the two slit interference experiment? (Select all that apply.) O Larger separation of the two slits. O Narrower slits. Wider slits. O Smaller separation of the two slits. PRACTICE IT Use the worked example above to help you solve this…arrow_forwardMicrowaves of wavelength 4.90 cm enter a long, narrow window in a building that is otherwise essentially opaque to the incoming waves. If the window is 34.5 cm wide, what is the distance from the central maximum to the first-order minimum along a wall 6.45 m from the window? cmarrow_forwardDue to the wave nature of light shines on a single slit will produce a diffraction pattern. Green light 505nm is shined on a slit with width 0.490nm. a) find the width of the central maximum located 1.50 m from the slit in mm b) what is the width of the first order fringe in mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Spectra Interference: Crash Course Physics #40; Author: CrashCourse;https://www.youtube.com/watch?v=-ob7foUzXaY;License: Standard YouTube License, CC-BY