University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 9CQ
In placing a sample on a microscope slide, a glass cover is placed over a water drop on the glass slide. Light incident from above can reflect from the top and bottom of the glass cover and from the glass slide below the water drop. At which surfaces will there be a phase change in the reflected light?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
In placing a sample on a microscope slide, a glass cover is placed over a water drop on the glass slide. Light incident fromabove can reflect from the top and bottom of the glass cover and from the glass slide below the water drop. At which surfaceswill there be a phase change in the reflected light?
A glass cover is put over a water drop on the microscope slide when a sample is placed on it. From above, light may reflect off the top and bottom of the glass cover, as well as the glass slide underneath the water drop. At which surfaces will the reflected light undergo a phase change?
White light is incident from air onto a triangular prism at a 55.0º angle with respect to the normal. The prism has an index of refraction of 1.45 for red light and 1.50 for violet light and the apex angle of the prism is 60º. Take nair=1.00 for all wavelengths.a) What is the angular separation (dispersion angle) of the two ends of the visible spectrum while in the prism?
b) What is the angular separation (dispersion angle) of the two ends of the visible spectrum upon exiting the prism?
Chapter 3 Solutions
University Physics Volume 3
Ch. 3 - Check Your Understanding In the system used in the...Ch. 3 - Check Your Understanding Going further with...Ch. 3 - Check Your Understanding Although m, the number of...Ch. 3 - Young’s double-slit experiment breaks a single...Ch. 3 - Is it possible to create a experimental setup in...Ch. 3 - Why won’t two small sodium lamps, held close...Ch. 3 - Suppose you use the same double slit to perform...Ch. 3 - Why is monochromatic light used in the double slit...Ch. 3 - What effect does increasing the wedge angle have...Ch. 3 - How is the difference in paths taken by two...
Ch. 3 - Is there a phase change in the light reflected...Ch. 3 - In placing a sample on a microscope slide, a glass...Ch. 3 - Answer the above question if the fluid between the...Ch. 3 - While contemplating the food value of a slice of...Ch. 3 - An inventor notices that a soap bubble is dark at...Ch. 3 - A nonreflective coating like the one described in...Ch. 3 - Why is it much more difficult to see interference...Ch. 3 - Describe how a Michelson interferometer can be...Ch. 3 - At what angle is the first-order maximum for...Ch. 3 - Calculate the angle for the third-order maximum of...Ch. 3 - What is the separation between two slits for which...Ch. 3 - Find the distance between two slits that produces...Ch. 3 - Calculate the wavelength of light that has its...Ch. 3 - What is the wavelength of light falling on double...Ch. 3 - At what angle is the fourth-order maximum for the...Ch. 3 - What is the highest-order maximum for 400-nm light...Ch. 3 - Find the largest wavelength of light falling on...Ch. 3 - What is the smallest separation between two slits...Ch. 3 - (a) What is the smallest separation between two...Ch. 3 - (a) If the first-order maximum for monochromatic...Ch. 3 - Shown below is a double slit located a distance x...Ch. 3 - Using the result of the preceding problem, (a)...Ch. 3 - Using the result of the problem two problems...Ch. 3 - In a double-slit experiment, the fifth maximum is...Ch. 3 - The source in Young’s experiment emits at two...Ch. 3 - If 500-nm and 650-nm light illuminates two slits...Ch. 3 - Red light of wavelength of 700 nm falls on a...Ch. 3 - Ten narrow slits are equally spaced 0.25 mm apart...Ch. 3 - The width of bright fringes can be calculated as...Ch. 3 - For a three-slit interference pattern, find the...Ch. 3 - What is the angular width of the central fringe of...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...Ch. 3 - Calculate the minimum thickness of an oil slick on...Ch. 3 - Find the minimum thickness of a soap bubble that...Ch. 3 - A film of soapy water (n=1.33) on top of a plastic...Ch. 3 - What are the three smallest non-zero thicknesses...Ch. 3 - Suppose you have a lens system that is to be used...Ch. 3 - (a) As a soap bubble thins it becomes dark,...Ch. 3 - To save money on making military aircraft...Ch. 3 - A Michelson interferometer has two equal arms. A...Ch. 3 - What is the distance moved by the traveling mirror...Ch. 3 - When the traveling mirror of a Michelson...Ch. 3 - In a Michelson interferometer, light of wavelength...Ch. 3 - A chamber 5.0 cm long with flat, parallel windows...Ch. 3 - For 600-nm wavelength light and a slit separation...Ch. 3 - If the light source in the preceding problem is...Ch. 3 - Red light (=710.nm) illuminates double slits...Ch. 3 - Two sources as in phase and emit waves with =0.42...Ch. 3 - Two slits 4.0106 m apart are illuminated by light...Ch. 3 - Suppose that the highest order fringe that can be...Ch. 3 - The interference pattern of a He-Ne laser light...Ch. 3 - Young’s double-slit experiment is performed...Ch. 3 - A double-slit experiment is to be set up so that...Ch. 3 - An effect analogous to two-slit interference can...Ch. 3 - A hydrogen gas discharge lamp emits visible light...Ch. 3 - Monochromatic light of frequency 5.51014 Hz falls...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - A transparent film of thickness 250 nm and index...Ch. 3 - An intensity minimum is found for 450 nm light...Ch. 3 - A thin film with n=1.32 is surrounded by air. What...Ch. 3 - Repeat your calculation of the previous problem...Ch. 3 - After a minor oil spill, a think film of oil...Ch. 3 - A microscope slide 10 cm long is separated from a...Ch. 3 - Suppose that the setup of the preceding problem is...Ch. 3 - A thin wedge filled with air is produced when two...Ch. 3 - Two identical pieces of rectangular plate glass...Ch. 3 - Two microscope slides made of glass are...Ch. 3 - A good quality camera “lens” is actually a system...Ch. 3 - Constructive interference is observed from...Ch. 3 - A soap bubble is blown outdoors. What colors...Ch. 3 - A Michelson interferometer with a He-Ne laser...Ch. 3 - An experimenter detects 251 fringes when the...Ch. 3 - A Michelson interferometer is used to measure the...Ch. 3 - A 5.08-cm-long rectangular glass chamber is...Ch. 3 - Into one arm of a Michelson interferometer, a...Ch. 3 - The thickness of an aluminum foil is measured...Ch. 3 - The movable mirror of a Michelson interferometer...Ch. 3 - In a thermally stabilized lab, a Michelson...Ch. 3 - A 65-fringe shift results in a Michelson...Ch. 3 - Determine what happens to the double-slit...Ch. 3 - Fifty-one narrow slits are equally spaced and...Ch. 3 - A film of oil on water will appear dark when it is...Ch. 3 - Figure 3.14 shows two glass slides illuminated by...Ch. 3 - Figure 3.14 shows two 7.50-cm-long glass slides...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
(a) A jet airplane flying from Darwin, Australia, has an air speed of 260 m/s in a direction 5.0° south of west...
College Physics
1. Can the magnitude of the displacement vector be more than the distance traveled? Less than the distance trav...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
What class of motion, natural or violent, did Aristotle attribute to motion of the Moon?
Conceptual Physics (12th Edition)
29. How long would it take you to walk to the moon, end how many steps would you have to take, assuming that yo...
College Physics (10th Edition)
Check Your Understanding A long solenoid of cross-section area 5.0 cm2is wound with 25 turns of wire pet centim...
University Physics Volume 2
Q22.1 A rubber balloon has a single point charge in its interior. Does the electric flux through the balloon de...
University Physics with Modern Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A beam of 580-nm light passes through two closely spaced glass plates at close to normal incidence as shown in Figure P27.23. For what minimum nonzero value of the plate separation d is the transmitted light bright?arrow_forwardLight enters a prism of crown glass and refracts at an angle of 5.00 with respect to the normal at the interface. The crown glass has a mean index of refraction of 1.51. It is combined with one flint glass prism (n = 1.65) to produce no net deviation. a. Find the apex angle of the flint glass. b. Assume the index of refraction for violet light (v = 430 nm) is nv = 1.528 and the index of refraction for red light (r = 768 nm) is nr = 1.511 for crown glass. For flint glass using the same wavelengths, nv = 1.665 and nr = 1.645. Find the net dispersion.arrow_forwardWhat is Brewster’s angle for light traveling in water that is reflected from crown glass?arrow_forward
- Light passes from a material with index of refraction 1.3 into one with index of refraction 1.2. Compared with the incident ray, what happens to the refracted ray? (a) It bends toward the normal. (b) It is undeflected. (c) It bends away from the normal.arrow_forwardTwo polarizing sheets P1 and P2 are placed together with their transmission axes oriented at an angle to each other. What is when only 25% of the maximum transmitted light intensity passes through them?arrow_forwardA narrow beam of white light enters a prism made of crown glass at a 45.0° incident angle, as shown in Figure 25.57. At what angles, R and V, do the red (660 nm) and violet (410 nm) components of the light emerge from the prism? Figure 25.57 This prism will disperse the while light into a rainbow of colors. The incident angle is 45.0°, and the angles at which the red and violet light emerge are R and V.arrow_forward
- The index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forwardA submarine is a distance 25.0 m below the surface of the ocean and sends a radio signal up to a battleship at the surface of the ocean. Some of the signal is reflected at the surface back into the ocean. Some of the signal passes through the surface and refracts. The signal that exits the ocean will pass through a circle at the surface. The battleship must be within that circle to receive the signal. Consider if the submarine is going through an oil spill that fills the ocean surrounding the submarine. The oil has an index of refraction that is 1.47. Find the diameter of the circle at the surface of the water where the signal can be received. (A) 27.5 m (B) 79.2 m (C) 46.4 m (D) 64.8 m (E) 56.9 m Find the apparent depth of the submarine when viewed from an observer at the surface of the water a horizontal distance of 13.0 m from the center of the circle where light can exit the ocean. (A) 17.0 m (B) 37.8 m (C) 44.9 m (D) 14.1 m (E) 58.3 marrow_forwardThe index of refraction of silicate flint glass for red light is 1.620 and for violet light is 1.660. A beam of white light in this glass strikes the glass-air interface at a 28.30° angle of incidence and refracts out into the air. What is the angular separation A between the red and violet components of the spectrum that emerges from the glass? A0=arrow_forward
- White light originates in water (n = 1.33) and then passes through crown glass, which has mild dispersion behavior (nred = 1.52, nviolet = 1.53). What initial angle above the horizontal in water would be required for the glass to refract red light but internally reflect the violet light? Assume the glass is in contact with air above it. What would be the angle of refraction for red light at the glass-air interface? Air Glass Waterarrow_forwardIn the figure below, assume that two waves of light in the air are innitially in phase. One wave travels through a layer of a material of index of refraction n1 = 1.5 and thickness L = 0.5 micro m. The other travels through an equally thick plastic layer of index of refraction n2 = 2. The wavelength of the light is 500nm. If after transversing the materials the waves arrive at some common point with the same amplitude, is there interference fully constructive, fully destructive, intermediate but closer to fully constructive, or intermediate but closer to fully destructive.arrow_forwardAt what angle above the horizon is the Sun if light from it is completely polarized upon reflection from water?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning