University Physics Volume 3
17th Edition
ISBN: 9781938168185
Author: William Moebs, Jeff Sanny
Publisher: OpenStax
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 74AP
A thin wedge filled with air is produced when two flat glass plates are placed on top of one another and a slip of paper is inserted between them at one edge. Interference fringes are observed when monochromatic light falling vertically on the plates are seen in reflection. Is the first fringe near the edge where the plates are in contact a bright fringe or a dark fringe? Explain.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
University Physics Volume 3
Ch. 3 - Check Your Understanding In the system used in the...Ch. 3 - Check Your Understanding Going further with...Ch. 3 - Check Your Understanding Although m, the number of...Ch. 3 - Young’s double-slit experiment breaks a single...Ch. 3 - Is it possible to create a experimental setup in...Ch. 3 - Why won’t two small sodium lamps, held close...Ch. 3 - Suppose you use the same double slit to perform...Ch. 3 - Why is monochromatic light used in the double slit...Ch. 3 - What effect does increasing the wedge angle have...Ch. 3 - How is the difference in paths taken by two...
Ch. 3 - Is there a phase change in the light reflected...Ch. 3 - In placing a sample on a microscope slide, a glass...Ch. 3 - Answer the above question if the fluid between the...Ch. 3 - While contemplating the food value of a slice of...Ch. 3 - An inventor notices that a soap bubble is dark at...Ch. 3 - A nonreflective coating like the one described in...Ch. 3 - Why is it much more difficult to see interference...Ch. 3 - Describe how a Michelson interferometer can be...Ch. 3 - At what angle is the first-order maximum for...Ch. 3 - Calculate the angle for the third-order maximum of...Ch. 3 - What is the separation between two slits for which...Ch. 3 - Find the distance between two slits that produces...Ch. 3 - Calculate the wavelength of light that has its...Ch. 3 - What is the wavelength of light falling on double...Ch. 3 - At what angle is the fourth-order maximum for the...Ch. 3 - What is the highest-order maximum for 400-nm light...Ch. 3 - Find the largest wavelength of light falling on...Ch. 3 - What is the smallest separation between two slits...Ch. 3 - (a) What is the smallest separation between two...Ch. 3 - (a) If the first-order maximum for monochromatic...Ch. 3 - Shown below is a double slit located a distance x...Ch. 3 - Using the result of the preceding problem, (a)...Ch. 3 - Using the result of the problem two problems...Ch. 3 - In a double-slit experiment, the fifth maximum is...Ch. 3 - The source in Young’s experiment emits at two...Ch. 3 - If 500-nm and 650-nm light illuminates two slits...Ch. 3 - Red light of wavelength of 700 nm falls on a...Ch. 3 - Ten narrow slits are equally spaced 0.25 mm apart...Ch. 3 - The width of bright fringes can be calculated as...Ch. 3 - For a three-slit interference pattern, find the...Ch. 3 - What is the angular width of the central fringe of...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...Ch. 3 - Calculate the minimum thickness of an oil slick on...Ch. 3 - Find the minimum thickness of a soap bubble that...Ch. 3 - A film of soapy water (n=1.33) on top of a plastic...Ch. 3 - What are the three smallest non-zero thicknesses...Ch. 3 - Suppose you have a lens system that is to be used...Ch. 3 - (a) As a soap bubble thins it becomes dark,...Ch. 3 - To save money on making military aircraft...Ch. 3 - A Michelson interferometer has two equal arms. A...Ch. 3 - What is the distance moved by the traveling mirror...Ch. 3 - When the traveling mirror of a Michelson...Ch. 3 - In a Michelson interferometer, light of wavelength...Ch. 3 - A chamber 5.0 cm long with flat, parallel windows...Ch. 3 - For 600-nm wavelength light and a slit separation...Ch. 3 - If the light source in the preceding problem is...Ch. 3 - Red light (=710.nm) illuminates double slits...Ch. 3 - Two sources as in phase and emit waves with =0.42...Ch. 3 - Two slits 4.0106 m apart are illuminated by light...Ch. 3 - Suppose that the highest order fringe that can be...Ch. 3 - The interference pattern of a He-Ne laser light...Ch. 3 - Young’s double-slit experiment is performed...Ch. 3 - A double-slit experiment is to be set up so that...Ch. 3 - An effect analogous to two-slit interference can...Ch. 3 - A hydrogen gas discharge lamp emits visible light...Ch. 3 - Monochromatic light of frequency 5.51014 Hz falls...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - Eight slits equally separated by 0.149 mm is...Ch. 3 - A transparent film of thickness 250 nm and index...Ch. 3 - An intensity minimum is found for 450 nm light...Ch. 3 - A thin film with n=1.32 is surrounded by air. What...Ch. 3 - Repeat your calculation of the previous problem...Ch. 3 - After a minor oil spill, a think film of oil...Ch. 3 - A microscope slide 10 cm long is separated from a...Ch. 3 - Suppose that the setup of the preceding problem is...Ch. 3 - A thin wedge filled with air is produced when two...Ch. 3 - Two identical pieces of rectangular plate glass...Ch. 3 - Two microscope slides made of glass are...Ch. 3 - A good quality camera “lens” is actually a system...Ch. 3 - Constructive interference is observed from...Ch. 3 - A soap bubble is blown outdoors. What colors...Ch. 3 - A Michelson interferometer with a He-Ne laser...Ch. 3 - An experimenter detects 251 fringes when the...Ch. 3 - A Michelson interferometer is used to measure the...Ch. 3 - A 5.08-cm-long rectangular glass chamber is...Ch. 3 - Into one arm of a Michelson interferometer, a...Ch. 3 - The thickness of an aluminum foil is measured...Ch. 3 - The movable mirror of a Michelson interferometer...Ch. 3 - In a thermally stabilized lab, a Michelson...Ch. 3 - A 65-fringe shift results in a Michelson...Ch. 3 - Determine what happens to the double-slit...Ch. 3 - Fifty-one narrow slits are equally spaced and...Ch. 3 - A film of oil on water will appear dark when it is...Ch. 3 - Figure 3.14 shows two glass slides illuminated by...Ch. 3 - Figure 3.14 shows two 7.50-cm-long glass slides...Ch. 3 - A soap bubble is 100 nm thick and illuminated by...Ch. 3 - An oil slick on water is 120 nm thick and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A new landowner has a triangular piece of flat land she wishes to fence. Starting at the west corner, she measu...
College Physics
Q7.1 A baseball is thrown straight up with initial speed ?0. If air resistance cannot be ignored, when the ball...
University Physics with Modern Physics (14th Edition)
1. a. Can a vector have nonzero magnitude if a component is zero? If no, why not? If yes, give an example.
b. C...
College Physics: A Strategic Approach (3rd Edition)
19. A car starts from rest at a stop sign. It accelerates at 4.0 m/s2 for 6.0 s, coasts for 2.0s, and then slow...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Figure P27.7 (not to scale), let L = 1.20 m and d = 0.120 mm and assume the slit system is illuminated with monochromatic 500-nm light. Calculate the phase difference between the two wave fronts arriving at P when (a) = 0.500 and (b) y = 5.00 mm. (c) What is the value of for which the phase difference is 0.333 rad? (d) What is the value of for which the path difference is /4?arrow_forwardAn effect analogous to two-slit interference can occur with sound waves, instead of light. In an open field, two speakers placed 1.30 m apart are powered by a single-function generator producing sine waves at 1200-Hz frequency. A student walks along a line 12.5 m away and parallel to the line between the speakers. She hears an alternating pattern of loud and quiet, due to constructive and destructive interference. What is (a) the wavelength of this sound and (b) the distance between the central maximum and the first maximum (loud) position along this line?arrow_forwardA spacer is cut from a playing card of thickness 2.90 104 m and used to separate one end of two rectangular, optically flat. 3.00-cm long glass plates with n = 1.55, as in Figure P24.24. Laser light at 594 nm shine straight down on the top plate. The plates have a length of 3.00 cm. (a) Count the number of phase reversals for the interfering waves. (b) Calculate the separation between dark interference Kinds observed on the lop plate.arrow_forward
- Why is the following situation impossible? A piece of transparent material having an index of refraction n = 1.50 is cut into the shape of a wedge as shown in Figure P36.40. Both the top and bottom surfaces of the wedge are in contact with air. Monochromatic light of wavelength = 632.8 nm is normally incident from above, and the wedge is viewed from above. Let h = 1.00 mm represent the height of the wedge and = 0.500 m its length. A thin-film interference pattern appears in the wedge due to reflection from the top and bottom surfaces. You have been given the task of counting the number of bright fringes that appear in the entire length of the wedge. You find this task tedious, and your concentration is broken by a noisy distraction after accurately counting 5 000 bright fringes. Figure P36.40arrow_forwardConsider the double-slit arrangement shown in Figure P37.60, where the slit separation is d and the distance from the slit to the screen is L. A sheet of transparent plastic having an index of refraction n and thickness t is placed over the upper slit. As a result, the central maximum of the interference pattern moves upward a distance y Find y.arrow_forwardSuppose Youngs double-slit experiment is performed in air using red light and then the apparatus is immersed in water. What happens to the interference pattern on the screen? (a) It disappears. (b) The bright and dark fringes stay in the same locations, but the contrast is reduced. (c) The bright fringes are closer together. (d) The bright fringes are farther apart. (e) No change happens in the interference pattern.arrow_forward
- Red light (wavelength 632.8 nm in air) from a Helium-Neon laser is incident on a single slit of width 0.05 mm. The entire apparatus is immersed in water of refractive index 1.333. Determine the angular width of the central peak.arrow_forwardTwo closely spaced wavelengths of light are incident on a diffraction grating. (a) Starting with Equation 37.7, show that the angular dispersion of the grating is given by dd=mdcos (b) A square grating 2.00 cm on each side containing 8 000 equally spaced slits is used to analyze the spectrum of mercury. Two closely spaced lines emitted by this element have wavelengths of 579.065 nm and 576.959 nm. What is the angular separation of these two wavelengths in the second-order spectrum?arrow_forwardShow that the distribution of intensity in a double-slit pattern is given by Equation 36.9. Begin by assuming that the total magnitude of the electric field at point P on the screen in Figure 36.4 is the superposition of two waves, with electric field magnitudes E1=E0sintE2=E0sin(t+) The phase angle in in E2 is due to the extra path length traveled by the lower beam in Figure 36.4. Recall from Equation 33.27 that the intensity of light is proportional to the square of the amplitude of the electric field. In addition, the apparent intensity of the pattern is the time-averaged intensity of the electromagnetic wave. You will need to evaluate the integral of the square of the sine function over one period. Refer to Figure 32.5 for an easy way to perform this evaluation. You will also need the trigonometric identity sinA+sinB=2sin(A+B2)cos(AB2)arrow_forward
- Monochromatic light is incident on a pair of slits that are separated by 0.200 mm. The screen is 2.50 m away from the slits. a. If the distance between the central bright fringe and either of the adjacent bright fringes is 1.67 cm, find the wavelength of the incident light. b. At what angle does the next set of bright fringes appear?arrow_forwardA wide beam of laser light with a wavelength of 632.8 nm is directed through several narrow parallel slits, separated by 1.20 mm, and falls on a sheet of photographic film 1.40 m away. The exposure time is chosen so that the film stays unexposed everywhere except at the central region of each bright fringe. (a) Find the distance between these interference maxima. The film is printed as a transparency; it is opaque everywhere except at the exposed lines. Next, the same beam of laser light is directed through the transparency and allowed to fall on a screen 1.40 m beyond. (b) Argue that several narrow, parallel, bright regions, separated by 1.20 mm, appear on the screen as real images of the original slits. (A similar train of thought, at a soccer game, led Dennis Gabor to invent holography.)arrow_forwardMonochromatic light of wavelength 620 nm passes through a very narrow slit S and then strikes a screen in which are two parallel slits. S1 and S2, as shown in Figure P37.75. Slit S1 is directly in line with S and at a distance of L = 1.20 in away from S, whereas S2, is displaced a distance d to one side. The light is detected at point /Jon a second screen, equidistant from S1 and S2. When either slit S1 or S2 is open, equal light intensities are measured at point P. When both slits are open, the intensity is three times larger. Find the minimum possible value for the slit separation d.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Diffraction of light animation best to understand class 12 physics; Author: PTAS: Physics Tomorrow Ambition School;https://www.youtube.com/watch?v=aYkd_xSvaxE;License: Standard YouTube License, CC-BY