
Concept explainers
a) CH2FCl
Interpretation:
The most electronegative element in CH2FCl is to be identified.
Concept introduction:
Electronegativity is the intrinsic ability of an atom to attract the shared pair of electrons in a covalent bond. Metals on the left side of the periodic table attract electron weekly and hence have low electronegativity values. Oxygen, nitrogen and halogens on the right side of the periodic table attract electron strongly and have high electronegativity values. Their position in the periodic table determines the relative values of electronegativity of elements. The electronegativity generally decreases from top to bottom and increases from left to right across the periodic table.
To determine:
The most electronegative element in CH2FCl.
b) FCH2CH2CH2Br
Interpretation:
The most electronegative element in CH2FCl is to be identified.
Concept introduction:
Electronegativity is the intrinsic ability of an atom to attract the shared pair of electrons in a covalent bond. Metals on the left side of the periodic table attract electron weekly and hence have low electronegativity values. Oxygen, nitrogen and halogens on the right side of the periodic table attract electron strongly and have high electronegativity values. Their position in the periodic table determines the relative values of electronegativity of elements. The electronegativity generally decreases from top to bottom and increases from left to right across the periodic table.
To determine:
The most electronegative element in FCH2CH2CH2Br.
c) HOCH2CH2NH2
Interpretation:
The most electronegative element in CH2FCl is to be identified.
Concept introduction:
Electronegativity is the intrinsic ability of an atom to attract the shared pair of electrons in a covalent bond. Metals on the left side of the periodic table attract electron weekly and hence have low electronegativity values. Oxygen, nitrogen and halogens on the right side of the periodic table attract electron strongly and have high electronegativity values. Their position in the periodic table determines the relative values of electronegativity of elements. The electronegativity generally decreases from top to bottom and increases from left to right across the periodic table.
To determine:
The most electronegative element in HOCH2CH2NH2.
d) CH3OCH2 Li
Interpretation:
The most electronegative element in CH3OCH2Li is to be identified.
Concept introduction:
Electronegativity is the intrinsic ability of an atom to attract the shared pair of electrons in a covalent bond. Metals on the left side of the periodic table attract electron weekly and hence have low electronegativity values. Oxygen, nitrogen and halogens on the right side of the periodic table attract electron strongly and have high electronegativity values. Their position in the periodic table determines the relative values of electronegativity of elements. The electronegativity generally decreases from top to bottom and increases from left to right across the periodic table.
To determine:
The most electronegative element in CH3OCH2Li.

Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video

Chapter 2 Solutions
Organic Chemistry
- How many hydrogen atoms are connected to the indicated carbon atom?arrow_forwardIdentify the compound with the longest carbon - nitrogen bond. O CH3CH2CH=NH O CH3CH2NH2 CH3CH2C=N CH3CH=NCH 3 The length of all the carbon-nitrogen bonds are the samearrow_forwardIdentify any polar covalent bonds in epichlorohydrin with S+ and 8- symbols in the appropriate locations. Choose the correct answer below. Η H's+ 6Η Η Η Η Η Ηδ Η Ο Ο HH +Η Η +Η Η Η -8+ CIarrow_forward
- H H:O::::H H H HH H::O:D:D:H HH HH H:O:D:D:H .. HH H:O:D:D:H H H Select the correct Lewis dot structure for the following compound: CH3CH2OHarrow_forwardRank the following compounds in order of decreasing boiling point. ннннн -С-С-Н . н-с- ННННН H ΗΤΗ НННН TTTĪ н-с-с-с-с-о-н НННН НН C' Н н-с-с-с-с-н НН || Ш НННН H-C-C-C-C-N-H ННННН IVarrow_forwardRank the following compounds in order of decreasing dipole moment. |>||>||| ||>|||>| |>|||>|| |||>||>| O ||>>||| H F H F H c=c || H c=c F F IIIarrow_forward
- choose the description that best describes the geometry for the following charged species ch3-arrow_forwardWhy isn't the ketone in this compound converted to an acetal or hemiacetal by the alcohol and acid?arrow_forwardWhat is the approximate bond angle around the nitrogen atom? HNH H Harrow_forward
- OH 1. NaOCH2CH3 Q 2. CH3CH2Br (1 equiv) H3O+ Select to Draw 1. NaOCH2 CH3 2. CH3Br (1 equiv) heat Select to Edit Select to Drawarrow_forwardComplete and balance the following half-reaction in acidic solution. Be sure to include the proper phases for all species within the reaction. S₂O₃²⁻(aq) → S₄O₆²⁻(aq)arrow_forwardQ Select to Edit NH3 (CH3)2CHCI (1 equiv) AICI 3 Select to Draw cat. H2SO4 SO3 (1 equiv) HO SOCl2 pyridine Select to Edit >arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





