Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29.6, Problem 29.6QQ
To determine
Is the wavelength of the characteristic x-rays increase or decrease or remains constant when increasing the energy of the electrons striking the metal target.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In an x-ray tube, as you increase the energy of the electrons striking the metal target, do the wavelengths of the characteristic x-rays(a) increase, (b) decrease, or (c) remain constant?
X rays are produced in an x-ray tube by electrons accelerated through an electric potential difference of 50.0 kV. Let K0 be the kinetic energy of an electron at the end of the acceleration. The electron collides with a target nucleus (assume the nucleus remains stationary) and then has kinetic energy K1 = 0.500K0. (a) What wavelength is associated with the photon that is emitted? The electron collides with another target nucleus (assume it, too, remains stationary) and then has kinetic energy K2 = 0.500K1. (b) What wavelength is associated with the photon that is emitted?
Calculate the minimum-wavelength x-ray that can be produced when a target is struck by an electron that has been accelerated through a potential difference of 26.0 kV and 1.10 ✕ 102 kV.
(a) 26.0 kV
?min =answer in m
(b) 1.10 ✕ 102 kV
?min =answer in m
(c) What happens to the minimum wavelength as the potential difference increases?
-remains the same
-increases
-decreases
Chapter 29 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 29.2 - Prob. 29.1QQCh. 29.2 - Prob. 29.2QQCh. 29.4 - Prob. 29.3QQCh. 29.5 - Prob. 29.4QQCh. 29.6 - Prob. 29.5QQCh. 29.6 - Prob. 29.6QQCh. 29 - Prob. 1OQCh. 29 - Prob. 2OQCh. 29 - Prob. 3OQCh. 29 - Prob. 4OQ
Ch. 29 - Prob. 5OQCh. 29 - Prob. 6OQCh. 29 - Prob. 7OQCh. 29 - Prob. 8OQCh. 29 - Prob. 9OQCh. 29 - Prob. 10OQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQCh. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - Prob. 8CQCh. 29 - Prob. 9CQCh. 29 - Prob. 10CQCh. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Prob. 5PCh. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Prob. 15PCh. 29 - Prob. 16PCh. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51PCh. 29 - Prob. 52PCh. 29 - Prob. 53PCh. 29 - Prob. 54PCh. 29 - Prob. 55PCh. 29 - Prob. 57PCh. 29 - Prob. 58PCh. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - Prob. 61PCh. 29 - Prob. 63PCh. 29 - Prob. 64PCh. 29 - Prob. 65PCh. 29 - Prob. 66P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At what velocity will an electron have a wavelength of 1.00 m?arrow_forwardIn an x-ray tube, if the energy with which the electrons strike the metal target is increased, the wavelengths of the characteristic x-rays do not change. Why not?arrow_forwardElectrons are accelerated from rest in a vacuum tube by an accelerating voltage. They strike a target and release x-rays as a result of the collision. If the highest-energy x-ray photons emitted by the target have a wavelength of 8.00 ✕ 10−11 m, what accelerating voltage (in V) is required? answer in Varrow_forward
- X rays with a wavelength of 0.0700 nm diffract from a crystal. Two adjacent angles of x-ray diffraction are 45.6° and 21.0°. What is the distance in nm between the atomic planes responsible for the diffraction?arrow_forwardIn an X-ray tube, electrons, bombarding the anode produce X-rays of wavelength 1A . The energy of an electron, when it hits the anode is (a) 19.8 × 10-16 ] (b) 16.3 × 10-16 J (c) 13.7 × 10-16 J (d) 9.8 × 10- 16 Jarrow_forwardCalculate the minimum-wavelength x-ray that can be produced when a target is struck by an electron that has been accelerated through a potential difference of 21.0 kV and 1.10 ✕ 102 kV. (a) 21.0 kV ?min = m (b) 1.10 ✕ 102 kV ?min = m (c) What happens to the minimum wavelength as the potential difference increases? increasesdecreases remains the samearrow_forward
- Electrons in an x-ray tube accelerate through a potential difference of 10.0 kV before striking a target. If an electron produces one photon on impact with the target, what is the minimum wavelength of the resulting x rays? Find the answer by expressing energies in both SI units and electron volts.arrow_forward.An x-ray photon whose initial frequency was 1.5x 109 Hz emerges from a collision with an electron with a frequency of 1.2x 1019 Hz. How much kinetic energy was imparted to the electron?arrow_forwardWhen ultraviolet light with a wavelength of 400.0 nm falls on a certain metal surface, the maximum kinetic energy of the emitted electrons is measured to be 1.10eV. What is the maximum kinetic energy of the electrons in joules when light of wavelength 300.0 nm falls on the surface?arrow_forward
- Q5 X-rays of wavelength 1 = 84 pm are scattered from a carbon target, and the scattered rays are detected at 158° to the incident beam. Evaluate: (i) The Compton shift of the scattered rays. (ii) The percentage of the initial x-ray photon energy that is transferred to an electron in the scattering. Take, Planck Constant h = 6.63 x 10-34 J. S Speed of light c = 3.00 x 10°m/s Mass of electron = 9.11 × 10-31kgarrow_forward(a) A hydrogen atom has its electron in the n = 6 level. The radius of the electron's orbit in the Bohr model is 1.905 nm. Find the de Broglie wavelength of the electron under these circumstances.___________ m(b) What is the momentum, mv, of the electron in its orbit? ________kg-m/sarrow_forwardAn x-ray tube has an applied voltage of 540 kV. (a) What is the most energetic x-ray photon it can produce? Express your answer in electron volts. (b)Find the wavelength (in nm) of such an x-ray.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax