Concept explainers
(a)
The longest wavelength corresponding to a transition of photon’s energy.
(a)
Answer to Problem 6P
The longest wavelength corresponding to a transition of photon’s energy is
Explanation of Solution
The longest wavelength of the photon implies lowest frequency and smallest energy. The electron makes a transition from
Write the expression for energy emitted by the electron in a transition from
Here,
Conclusion:
The energy emitted by the electron in a transition from
Therefore, the longest wavelength corresponding to a transition of photon’s energy is
(b)
The longest wavelength of the corresponding transition.
(b)
Answer to Problem 6P
The longest wavelength of the corresponding transition is
Explanation of Solution
Write the expression from the relation between frequency and wavelength.
Here,
Write the expression for photon’s energy.
Here,
Rewrite the equation (II) for frequency.
Conclusion:
Substitute equation (III) in equation (I).
Substitute
This is the red Balmer alpha line, which gives its characteristic color to the chromospheres of the sun and to photograph of the Orion nebula.
Therefore, the longest wavelength of the corresponding transition is
(c)
The shortest wavelength corresponding to a transition of photon’s energy.
(c)
Answer to Problem 6P
The shortest wavelength corresponding to a transition of photon’s energy is
Explanation of Solution
The shortest wavelength of the photon implies highest frequency and greatest energy. The electron makes a transition from
Write the expression for energy emitted by the electron in a transition from
Here,
Conclusion:
The energy emitted by the electron in a transition from
Therefore, the shortest wavelength corresponding to a transition of photon’s energy is
(d)
The shortest wavelength of the corresponding transition.
(d)
Answer to Problem 6P
The shortest wavelength of the corresponding transition is
Explanation of Solution
Write the expression from the relation between frequency and wavelength.
Here,
Write the expression for photon’s energy.
Here,
Rewrite the equation (II) for frequency.
Conclusion:
Substitute equation (III) in equation (I).
Substitute
Therefore, the smallest wavelength of the corresponding transition is
(e)
The shortest possible wavelength in the Balmer series.
(e)
Answer to Problem 6P
The shortest possible wavelength in the Balmer series is
Explanation of Solution
The transition limit in Balmer series is from
Conclusion:
Therefore, the shortest possible wavelength in the Balmer series is
Want to see more full solutions like this?
Chapter 29 Solutions
Principles of Physics: A Calculus-Based Text
- Plz plz no chatgpt pls will upvote .arrow_forwardYou want to determine if a new material created for solar panels increases the amount of energy that can be captured . You have acquired 15 panels of different sizes manufactured with different materials including the new material.You decide to set up an experiment to solve this problem .What do you think are the 3 most important variables to address in your experience? How would you incorporate those materials in your experiment?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Why can't this be correct: &= 7m?arrow_forwardgive a brief definition of the word "paradigm" as well as an example of a current scientific paradigmarrow_forward7. Are all scientific theories testable in the commonly understood sense? How does this make you feel? How should you proceed as a scientist or engineer with this understanding?arrow_forward
- What is an an example of a hypothesis that sounds scientific but is notarrow_forwardWhat is an example of a scientific hypothesisarrow_forwardMultiverse is called a theory. It has been proposed to account for the apparent and uncanny fine tuning of our own universe. The idea of the multiverse is that there are infinite, distinct universes out there - all with distinct laws of nature and natural constants - and we live in just one of them. Using the accepted definition of the universe being all that there is (matter, space and energy), would you say that multiverse is a scientific theory?arrow_forward
- How is a law usually different than a theoryarrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forwardA 1.50 mLmL syringe has an inner diameter of 5.00 mmmm, a needle inner diameter of 0.270 mmmm, and a plunger pad diameter (where you place your finger) of 1.2 cmcm. A nurse uses the syringe to inject medicine into a patient whose blood pressure is 140/100. Part A What is the minimum force the nurse needs to apply to the syringe? Express your answer with the appropriate units. View Available Hint(s)for Part A Hint 1for Part A. How to approach the question The force the nurse applies to the syringe can be determined from the fluid pressure and the area of the plunger. The minimum force corresponds to the patient's lowest blood pressure. Use the following equality 760mmofHg=1atm=1.013×10^5Pa760mmofHg=1atm=1.013×10^5Pa.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax