Concept explainers
(a)
To show that the difference in wavelength between the hydrogen-1 and deuterium spectral lines associated with a particular electron transition is
(a)
Answer to Problem 11P
The difference in wavelength between the hydrogen-1 and deuterium spectral lines associated with a particular electron transition is
Explanation of Solution
Write the general expression for the energy levels of one electron atoms.
Here,
Refer the above equation and write an expression for energy released for any transition in hydrogen-1 or proton atom.
Here,
Refer the above equation and write an expression for energy released for any transition in hydrogen-2 or deuterium atom.
Here,
Write the formula for the reduced mass of proton atom.
Here,
Write the formula for the reduced mass of the deuterium atom.
Here,
Divide equation (I) and (II).
Energy is inversely proportional to the wavelength. Thus re-write the above equation.
Here,
Re-write the above equation.
Conclusion:
The difference in wavelength between the hydrogen-1 and deuterium spectral lines associated with a particular electron transition is
(b)
The wavelength difference for the Balmer alpha line of hydrogen emitted from a transition from
(b)
Answer to Problem 11P
The wavelength difference for the Balmer alpha line of hydrogen emitted from a transition from
Explanation of Solution
Refer section (a) and write the formula for the ration of the reduced mass of proton.
Here,
Write the formula for the reduced mass of the deuterium atom.
Here,
Write the formula for the ration of reduced mass of proton and deuterium.
Write the formula for the difference in wavelength of proton and deuterium.
Conclusion:
Substitute
Substitute
The wavelength difference for the Balmer alpha line of hydrogen emitted from a transition from
Want to see more full solutions like this?
Chapter 29 Solutions
Principles of Physics: A Calculus-Based Text
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning