Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 52P
(a)
To determine
The expression for the probability as a function of
(b)
To determine
Draw the graph of the probability as a function.
(c)
To determine
The value of the radial distance between nucleus and electron for the probability of finding the electron outside and inside the sphere.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Chapter 38, Problem 071
For the arrangement of Figure (a) and Figure (b), electrons in the incident beam in region 1 have energy E
has a height of U1
= 823 ev and the potential step
= 617 ev. What is the angular wave number in (a) region 1 and (b) region 2? (c) What is the reflection coefficient? (d)
If the incident beam sends 5.29 x 105 electrons against the potential step, approximately how many will be reflected?
V= 0
V< 0
x = 0
region 1
region 2
(a)
Energy
--E-
Electron
(b)
Problem 1. Consider the following 1-dimensional model of negative ion photodetachment. Let m be
the electron mass, and assume the electron-atom potential energy is an attractive delta function,
V(x)= - V. 8(x) with coefficient -Vo.
(b) Now suppose a weak time-dependent perturbing electric field is applied along the x-axis, equal to
E(t)= E, exp(-i w t) +c.c.; Find the energy-normalized final state eigenfunctions for the unperturbed
Hamiltonian, having odd parity.
(c) Using the Golden Rule, calculate the photodetachment rate as a function of (hbar w) in these units,
i.e. calculate the probability per unit time in these units for the electron to escape to infinity. Glve an
analytic expression and plot it from 0 final state energy up to an energy|10 E(ground) |, i.e. for
frequencies that reach up to a final state energy that is 10 times the absolute value of the ground state
energy. For making a plot of these numerical values, use V. =0.03 and a field strength amplitude
Eo=0.0002.
Problem 7: The electric potential near a hydrogen atom can
be modeled as the equation to the right where ao is the Bohr
radius and q is the charge on the central proton.
V (r)
exp(- 2r/a,)(1 +a/r)
Randomized Variables
m = 2
n = 3
Part (a) Find an expression for the 0-component of the electric field, Eg.
Numeric : A numeric value is expected and not an expression.
Eg =
Part (b) Find an expression for the o-component (azimuthal) of the electric field, Eo
Expression :
Select from the variables below to write your expression. Note that all variables may not be required.
a, B, 0, a, b, c, d, g, h, j, k, m, P, S, t
Part (c) What is the change in the magnitude of the electric field (in N/C) if a test point moves from the position (x = m²ao, y
= 0, z = 0) to position (x = n-ao, y = 0, z = 0).
Numeric : A numeric value is expected and not an expression.
ΔΕ Ξ
Chapter 29 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 29.2 - Prob. 29.1QQCh. 29.2 - Prob. 29.2QQCh. 29.4 - Prob. 29.3QQCh. 29.5 - Prob. 29.4QQCh. 29.6 - Prob. 29.5QQCh. 29.6 - Prob. 29.6QQCh. 29 - Prob. 1OQCh. 29 - Prob. 2OQCh. 29 - Prob. 3OQCh. 29 - Prob. 4OQ
Ch. 29 - Prob. 5OQCh. 29 - Prob. 6OQCh. 29 - Prob. 7OQCh. 29 - Prob. 8OQCh. 29 - Prob. 9OQCh. 29 - Prob. 10OQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQCh. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - Prob. 8CQCh. 29 - Prob. 9CQCh. 29 - Prob. 10CQCh. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Prob. 5PCh. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Prob. 15PCh. 29 - Prob. 16PCh. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51PCh. 29 - Prob. 52PCh. 29 - Prob. 53PCh. 29 - Prob. 54PCh. 29 - Prob. 55PCh. 29 - Prob. 57PCh. 29 - Prob. 58PCh. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - Prob. 61PCh. 29 - Prob. 63PCh. 29 - Prob. 64PCh. 29 - Prob. 65PCh. 29 - Prob. 66P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If the radius of a calcium ion is 0.22 nm, how much energy does it take to singly ionize it? Give your answer in electron-volts (eV) with precision 0.1 eV. Give your answer to 2 significant digits.arrow_forwardA triply ionised beryllium atom (Be+++, Z = 4) has only one electron in orbit about the nucleus. If the electron decays from the n 7 level to the first excited state (n = 2), calculate the wavelength of the photon emitted. Please give your answer in units of nm, rounded to one decimal place. Answer:arrow_forwardUse the Saha equation to determine the fraction of Hydrogen atoms that are ionized Nu/Ntotal at the center of the Sun, where the temperature is 15.7 million K and the electron number density is ne=6.1x1031 /m³. Don't try to compare your result with actual data, as your result will be lower due to not taking the pressure into account. Since most of the neutral H atoms are in the ground state, use Zrdegeneracy3D2 and, since a H ion is just a proton, Zı=1. Also, use XI=13.6 eV.arrow_forward
- The emergence of line spectra from a gas when a current passes through it was an observed phenomenon waiting for an explanation in the early 20th century. The atomic line spectra coming from elements such as hydrogen had been analyzed since the late 19th century. By studying the wavelength of the emerging radiation of hydrogen, experimenters found (often by trial and error) that the wavelengths in those spectra were described by the formula 1 = R ( 1/2 - 1/2 ) where R is known as the Rydberg constant. It has a value of R=1.097 × 107 m-¹. The variables n₁ and no are integer numbers (n₁ = 1, 2, 3, 4, ...). As experiments continued, scientists began to see more and more characteristic lines emerging from the hydrogen spectrum. Each of them corresponded to a wavelength predicted by this formula with some integer values for m₁ and ₂. In 1913, Niels Bohr provided an explanation for the observations made in experiments by proposing that each electron in an atom had only certain allowable…arrow_forwardIf the radius of a calcium ion is 0.19 nm, how much energy does it take to singly ionize it? Give your answer in electron-volts (eV) with precision 0.1 eV. Give your answer to 2 significant digits. (with step pls)arrow_forwardWe can approximate an electron moving in a nanowire (a small, thin wire) as a one-dimensional infi nite square-well potential. Let the wire be 2.0 μm long. The nanowire is cooled to a temperature of 13 K, and we assume the electron’s average kinetic energy is that of gas molecules at this temperature ( 3kT/2). (a) What are the three lowest possible energy levels of the electrons? (b) What is the approximate quantum number of electrons moving in the wire?arrow_forward
- Use Boltzmann distribution to solve this problem.A system consists of 3, 000 particles that can only occupy two energy levels: a nondegen-erate ground state of 0.052 eV and a threefold degenerate excited state at 0.156 eV. IfT = 900 K,(a) find the number of particles at each energy level.(b) what is the total energy of the system?arrow_forwardPlease only type answerarrow_forwardModel an atom as an electron confined in a rigid box of length 0.10nm. Calculate the wavelength of the emitted photon for the electronic transition from the second excited state to the ground state.Express your answer in units of nm.arrow_forward
- The total probability of finding an electron in the hydrogen atom is related to the integral ∫ r2 e-2r/ao dr Where r is the distance of the electron from the nucleus and ao is the Bohr radius. Evaluate thisintegral.arrow_forwardPlease Asaparrow_forwardWhat is the probability that a neutron can move one mean free path without interacting in a medium? 1(x) λ== e-Ex Io Σε =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning