Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 29, Problem 54P
To determine
The ground state energy of the system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6.
Use Boltzmann distribution to solve this problem.
A system consists of 3,000 particles that can only occupy two energy levels: a nondegen-
erate ground state of 0.052 eV and a threefold degenerate excited state at 0.156 eV. If
T = 900 K,
(а)
find the number of particles at each energy level.
–0156
ev
(b)
what is the total energy of the system?
0,052
ev
A particle of mass m is under the central force created by the potential energy U(r)=A*r (A>0). The angular momentum of the particle is L (L is not equal to zero).
Find the minimum energy E0 (m, A, L).
Hint is given in the figure
In solid helium the spacing between atoms is about 3Å . Helium contains 2 protons and 2 neutrons, so the mass of a helium atom is 6.6×10−27 kg. What is the smallest possible energy of a helium atom in solid helium? What temperature (in Kelvin) does this energy correspond with? (Boltzmann's constant is kb=1.38×10−23 J/K
Chapter 29 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 29.2 - Prob. 29.1QQCh. 29.2 - Prob. 29.2QQCh. 29.4 - Prob. 29.3QQCh. 29.5 - Prob. 29.4QQCh. 29.6 - Prob. 29.5QQCh. 29.6 - Prob. 29.6QQCh. 29 - Prob. 1OQCh. 29 - Prob. 2OQCh. 29 - Prob. 3OQCh. 29 - Prob. 4OQ
Ch. 29 - Prob. 5OQCh. 29 - Prob. 6OQCh. 29 - Prob. 7OQCh. 29 - Prob. 8OQCh. 29 - Prob. 9OQCh. 29 - Prob. 10OQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQCh. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - Prob. 8CQCh. 29 - Prob. 9CQCh. 29 - Prob. 10CQCh. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Prob. 5PCh. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Prob. 15PCh. 29 - Prob. 16PCh. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51PCh. 29 - Prob. 52PCh. 29 - Prob. 53PCh. 29 - Prob. 54PCh. 29 - Prob. 55PCh. 29 - Prob. 57PCh. 29 - Prob. 58PCh. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - Prob. 61PCh. 29 - Prob. 63PCh. 29 - Prob. 64PCh. 29 - Prob. 65PCh. 29 - Prob. 66P
Knowledge Booster
Similar questions
- The energy eigenvalues of a particle in a 3-D box of dimensions (a, b, c) is given by E (nx, ny, nz) -2²² (²²² +²2² +²2²) (a) Ten protons are confined in a box of dimension (a, 2a, a) on each side. Calculate the total energy of the ground state of these ten protons if we assume that the protons don't interact with each other. (b) If the ten protons are replaced by 10 neutral hydrogen atoms in the ground state, calculate the total energy resulting from the confinement. Again assume that the hydrogen atoms do not interact with each other. You can treat the mass of proton and hydrogen atom to be identical.arrow_forwardA system of three identical distinguishable particles has energy 3ɛ. The single particle can take discrete energies 0, &, 2, 3ɛ and so on. The average number of particles in the energy state & is 1.2 0.9 0.6 0.3arrow_forwardSpin fermions of mass m and 4m are in a harmonic potential V (x) =-kx² . Which 2 configuration of 4 such particles has the lowest value of the ground state energy? (a) 4 particles of mass m (b) 4 particles of mass 4m (c) 1 particle of mass m and 3 particles of mass 4m (d) 2 particles of mass m and 2 particles of mass 4marrow_forward
- = = Imagine that we have a box that emits electrons in a definite but unknown spin state y). If we send electrons from this box through an SGz device, we find that 20% are determined to have Sz +ħ and 80% to have S₂ -ħ. If we send electrons from this box through an SGx device, we find that 90% are determined to have Sx +ħ and 10% to have Sx Determine the state vector for electrons emerging from the box. You may assume that the vector components are real. -1/ħ. = -arrow_forwardThe two nuclei in the carbon monoxide (CO) molecules are 0.1128 nm apart. The mass of the carbon atom is 1.993x10-26 kg. The mass of the oxygen atom is 2.656x10-26 kg. What is the first excited rotational energy level for the CO molecule? (Give the your answer in meV.)arrow_forwardThe degeneracy pressure of the electrons can stabilize the collapse of a star due to gravity by equating the gravitational inward pressure with the outward electron gas degeneracy pressure. These cold stars called white dwarfs have small radii compared to their original size and this radius decreases as the original mass of the star increases. As the mass of a star increases, the electron energy increases to a point in which their energy has to be treated relativistically. (a) Evaluate the degeneracy pressure for ultra-relativistic electrons (problem 2, above). (b) As the pressure increases, the reaction e − + p → n + ν takes place. The neutrinos (ν) escape as matter is transparent to them, electrons and protons convert to neutrons until we are left with a neutron star. Using your expression for the degeneracy pressure obtained in (a) above, equate the gravitational pressureto the neutron degeneracy pressure (replace the electron’s mass in your degeneracy pressure expression from (a)…arrow_forward
- A neutral sodium atom has an ionization potential of 5.1 eV. What is the speed of a free electron that has just barely enough kinetic energy to collisionally ionize a sodium atom in its ground state? What is the speed of a free proton with just enough kinetic energy to collisionally ionize this atom?arrow_forwardThe figure shows a model of the energy levels of an atom. The atom is initially in state W, which is the ground state for the atom. After a short amount of time, the atom then transitions to state X. The atom then transitions to state Y before transitioning to state Z. The atom then transitions back to state W. Which of the following descriptions is correct about the atom as it transitions from state W to each subsequent state until it finally returns to its original state?arrow_forwardThe population ratio between two energy levels ni nj separated in energy by: A E = E₁ - Ej with AE = 1.1×10-22 J is 0.84. That is: ni = 0.84 with AE = 1.1×10-22] nj Remember the Boltzmann equation for the population of particles in state i with energy Ei at temperature T is: N n₁ = = e Z What is the temperature of the system (use two sig figs)? 4.0 ✓ Karrow_forward
- The hydrogen atom was initially at the state where n=3 and l=2. It then decays to a lower state releasing a photon. What are the possible photon energies(in [eV]) that may be observed?arrow_forwardA proton is in a one-dimensional box of width 7.8 pm (1 pm = 1 x 10-¹2 m). The energy of the proton is equal to the absolute value of the ground state of a hydrogen atom. What state is the proton in?arrow_forwardChapter 39, Problem 043 In the ground state of the hydrogen atom, the electron has a total energy of -13.6 ev. What are (a) its kinetic energy and (b) its potential energy if the electron is a distance 4.0a from the central nucleus? Here a is the Bohr radius. (a) Number Units eV (b) Number Units eVarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning