Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 16P
(a)
To determine
Whether wave function of 1s state satisfies shcrodinger’s equation.
(b)
To determine
Energy of 1s state.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The time-independent
w (r) =
√
1
P =
wavefunction of the ground state of the hydrogen electron is a function of radial position r.
y
3/2
elas
In the equation, ao 0.0529 nm is the Bohr radius.
What is the probability P of finding the hydrogen electron within a spherical shell of inner radius 0.00600 nm and outer radius
0.0316 nm?
Zirconium (Z = 40) has two electrons in an incomplete d subshell. (a) What are the values of n and ℓ, for each electron? (b) What are all possible values of mℓ, and ms ? (c) What is the electron configuration in the ground state of zirconium?
For a spherically symmetric state of a hydrogen atom, the
Schrödinger equation in spherical coordinates is
h2 ( d²s
2 dự
+
r dr
- µ = E¼
2m dr2
(a) Show that the 1s wave function for an electron in
hydrogen,
1
1,(7) =
satisfies the Schrödinger equation. (b) What is the energy of
the atom for this state?
Chapter 29 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 29.2 - Prob. 29.1QQCh. 29.2 - Prob. 29.2QQCh. 29.4 - Prob. 29.3QQCh. 29.5 - Prob. 29.4QQCh. 29.6 - Prob. 29.5QQCh. 29.6 - Prob. 29.6QQCh. 29 - Prob. 1OQCh. 29 - Prob. 2OQCh. 29 - Prob. 3OQCh. 29 - Prob. 4OQ
Ch. 29 - Prob. 5OQCh. 29 - Prob. 6OQCh. 29 - Prob. 7OQCh. 29 - Prob. 8OQCh. 29 - Prob. 9OQCh. 29 - Prob. 10OQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQCh. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - Prob. 8CQCh. 29 - Prob. 9CQCh. 29 - Prob. 10CQCh. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Prob. 5PCh. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Prob. 15PCh. 29 - Prob. 16PCh. 29 - Prob. 17PCh. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - Prob. 29PCh. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51PCh. 29 - Prob. 52PCh. 29 - Prob. 53PCh. 29 - Prob. 54PCh. 29 - Prob. 55PCh. 29 - Prob. 57PCh. 29 - Prob. 58PCh. 29 - Prob. 59PCh. 29 - Prob. 60PCh. 29 - Prob. 61PCh. 29 - Prob. 63PCh. 29 - Prob. 64PCh. 29 - Prob. 65PCh. 29 - Prob. 66P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For a hydrogen atom in an excited state with principal quantum number n, show that the smallest angle that the orbital angular momentum vector can make with respect to the z-axis is =cos1( n1n) .arrow_forwardCompute the intrinsic line-width (Δλ) of the Lyman α line (corresponding to the n=2 to n=1) transition for the Hydrogen atom. You may assume that the electron remains in the excited state for a time of the order of 10^−8s. The line-width may be computed using:ΔE=(hc/λ^2)Δλarrow_forwardSuppose a hydrogen atom is in the 2s state, with its wave function given by the equation below. Taking r = 0.90a0, calculate the following quantities: [refer to picture] (a) ψ2s(r) (b) |ψ2s(r)|^2 (c) P2s(r)arrow_forward
- The wave function for hydrogen in the 1s state may be expressed as Psi(r) = Ae−r/a0, where A = 1/sqrt(pi*a03) Determine the probability for locating the electron between r = 0 and r = a0.arrow_forwardground state wave function of Hydrogen (with l=m=0), calculate the electron’s average distance from the proton in terms of the Bohr radius, a ∼0.5 ×10−10m.arrow_forwardA beryllium nucleus (Z=4) is orbited by a single electron in the ground state. The electron absorbs a photon with 1 = 6.41 nm. To which excited state does the electron jump?arrow_forward
- Hydrogen gas can be placed inside a strong magnetic field B=12T. The energy of 1s electron in hydrogen atom is 13.6 eV ( 1eV= 1.6*10 J ). a) What is a wavelength of radiation corresponding to a transition between 2p and 1s levels when magnetic field is zero? b) What is a magnetic moment of the atom with its electron initially in s state and in p state? c) What is the wavelength change for the transition from p- to s- if magnetic field is turned on?arrow_forwardA negatively charged muon (µ¯) has the same charge as as electron, but it is heavier. Imagine a hydrogen-like atom in which the electron is replaced by a muon. Such atoms are called muonic atoms, and they can be produced in the laboratory. Assume that such an atom can be described in the same way as the normal Bohr atom. (a) What is the ground state energy of a muonic hydrogen atom? (b) What is the radius of the muon's orbit in the ground state of a muonic hydrogen atom? (c) What is the radius of the muon's orbit in the ground state of a muonic lead atom (Z = 82), i.e., a lead nucleus with one muon (and no electrons) orbiting it? Compare this with the radius of the lead nucleus (about 7 fm). What does this tell you about the muon's "orbital path?"arrow_forwardWhat is the answerarrow_forward
- The average value (or expected value) of r^k, where r is the distance of an electron in the state with principal quantum number n and orbital quantum number leo proton in the hydrogen atom is given by the integral below, where Pnl(r) is a radial probability density of the state with quantum number n, lek is an arbitrary power. For an electron in the ground state of the hydrogen atom. a) calculate <r>nl in terms of the Bohr radius aB b) calculate <l/r>nl in terms of aB c) calculate <U(r)>nl, where U(r) = -e^2/(4piE0r). Respond in eV units. d) Considering also that the electron is in the ground state, estimate the expected value for two kinetic energy <K> and its mean quadratic velocity v. e) Is it justifiable to disregard relativistic corrections for this system? Justify.arrow_forward(a) How much energy is required to cause an electron in hydrogen to move from the n = 2 state to the n = 5 state? in J(b) Suppose the atom gains this energy through collisions among hydrogen atoms at a high temperature. At what temperature would the average atomic kinetic energy 3/2 * kBT be great enough to excite the electron? Here kB is Boltzmann's constant. in Karrow_forward(a) How much energy is required to cause an electron in hydrogen to move from the n = 2 state to the n = 5 state?in J(b) Suppose the atom gains this energy through collisions among hydrogen atoms at a high temperature. At what temperature would the average atomic kinetic energy 3/2 * kBT be great enough to excite the electron? Here kB is Boltzmann's constant. in Karrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax