University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 29, Problem 29.14DQ
Small one-cylinder gasoline engines sometimes use a device called a magneto to supply current to the spark plug. A permanent magnet is attached to the flywheel, and a stationary coil is mounted adjacent to it. Explain how this device is able to generate current. What happens when the magnet passes the coil?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 29 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 29.2 - The accompanying figure shows a wire coil being...Ch. 29.3 - (a) Suppose the magnet in Fig. 29.14a were...Ch. 29.4 - The earths magnetic field points toward (magnetic)...Ch. 29.5 - If you wiggle a magnet back and forth in your...Ch. 29.6 - Prob. 29.6TYUCh. 29.7 - Prob. 29.7TYUCh. 29 - A sheet of copper is placed between the poles of...Ch. 29 - Prob. 29.2DQCh. 29 - Prob. 29.3DQCh. 29 - Prob. 29.4DQ
Ch. 29 - A long, straight conductor passes through the...Ch. 29 - A student asserted that if a permanent magnet is...Ch. 29 - An airplane is in level flight over Antarctica,...Ch. 29 - Consider the situation in Exercise 29.21. In part...Ch. 29 - Prob. 29.9DQCh. 29 - Prob. 29.10DQCh. 29 - Example 29.6 discusses the external force that...Ch. 29 - In the situation shown in Fig. 29.18, would it be...Ch. 29 - Prob. 29.13DQCh. 29 - Small one-cylinder gasoline engines sometimes use...Ch. 29 - Does Lenzs law say that the induced current in a...Ch. 29 - Does Faradays law say that a large magnetic flux...Ch. 29 - Can one have a displacement current as well as a...Ch. 29 - Prob. 29.18DQCh. 29 - Match the mathematical statements of Maxwells...Ch. 29 - If magnetic monopoles existed, the right-hand side...Ch. 29 - Prob. 29.21DQCh. 29 - A single loop of wire with an area of 0.0900 m2 is...Ch. 29 - In a physics laboratory experiment, a coil with...Ch. 29 - Search Coils and Credit Cards. One practical way...Ch. 29 - A closely wound search coil (see Exercise 29.3)...Ch. 29 - A circular loop of wire with a radius of 12.0 cm...Ch. 29 - CALC A coil 4.00 cm in radius, containing 500...Ch. 29 - Prob. 29.7ECh. 29 - CALC A flat, circular, steel loop of radius 75 cm...Ch. 29 - Shrinking Loop. A circular loop of flexible iron...Ch. 29 - A closely wound rectangular coil of 80 turns has...Ch. 29 - CALC In a region of space, a magnetic field points...Ch. 29 - In many magnetic resonance imaging (MRI) systems,...Ch. 29 - The armature of a small generator consists of a...Ch. 29 - A flat, rectangular coil of dimensions l and w is...Ch. 29 - A circular loop of wire is in a region of...Ch. 29 - The current I in a long, straight wire is constant...Ch. 29 - Two closed loops A and C are close to a long wire...Ch. 29 - The current in Fig. E29.18 obeys the equation I(t)...Ch. 29 - Prob. 29.19ECh. 29 - A cardboard tube is wrapped with two windings of...Ch. 29 - A small, circular ring is inside a larger loop...Ch. 29 - A circular loop of wire with radius r = 0.0480 m...Ch. 29 - CALC A circular loop of wire with radius r =...Ch. 29 - A rectangular loop of wire with dimensions 1.50 cm...Ch. 29 - In Fig. E29.25 a conducting rod of length L = 30.0...Ch. 29 - A rectangle measuring 30.0 cm by 40.0 cm is...Ch. 29 - Are Motional emfs a Practical Source of...Ch. 29 - Motional emfs in Transportation. Airplanes and...Ch. 29 - The conducting rod ab shown in Fig. E29.29 makes...Ch. 29 - A 0.650-m-long metal bar is pulled to the right at...Ch. 29 - A 0.360-m-long metal bar is pulled to the left by...Ch. 29 - Prob. 29.32ECh. 29 - A 0.250-m-long bar moves on parallel rails that...Ch. 29 - Prob. 29.34ECh. 29 - Prob. 29.35ECh. 29 - A metal ring 4.50 cm in diameter is placed between...Ch. 29 - Prob. 29.37ECh. 29 - Prob. 29.38ECh. 29 - A long, thin solenoid has 400 turns per meter and...Ch. 29 - Prob. 29.40ECh. 29 - A long, straight solenoid with a cross-sectional...Ch. 29 - Prob. 29.42ECh. 29 - Prob. 29.43ECh. 29 - CALC In Fig. 29.23 the capacitor plates have area...Ch. 29 - Prob. 29.45ECh. 29 - A very long, rectangular loop of wire can slide...Ch. 29 - CP CALC In the circuit shown in Fig. P29.47, the...Ch. 29 - Prob. 29.48PCh. 29 - CALC A very long, straight solenoid with a...Ch. 29 - Prob. 29.50PCh. 29 - In Fig. P29.51 the loop is being pulled lo the...Ch. 29 - Make a Generator? You are shipwrecked on a...Ch. 29 - A flexible circular loop 6.50 cm in diameter lies...Ch. 29 - CALC A conducting rod with length L = 0.200 m,...Ch. 29 - Prob. 29.55PCh. 29 - CP CALC Terminal Speed. A bar of length L = 0.36 m...Ch. 29 - CALC The long, straight wire shown in Fig. P29.57a...Ch. 29 - CALC A circular conducting ring with radius r0 =...Ch. 29 - CALC A slender rod, 0.240 m long, rotates with an...Ch. 29 - A 25.0-cm-long metal rod lies in the .xy-plane and...Ch. 29 - CP CALC A rectangular loop with width L and a...Ch. 29 - CALC An airplane propeller of total length L...Ch. 29 - The magnetic field B, at all points within a...Ch. 29 - CP CALC A capacitor has two parallel plates with...Ch. 29 - Prob. 29.65PCh. 29 - Prob. 29.66PCh. 29 - DATA You are conducting an experiment in which a...Ch. 29 - DATA You measure the magnitude of the external...Ch. 29 - A metal bar with length L, mass m, and resistance...Ch. 29 - CP CALC A square, conducting, wire loop of side L,...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - It may be desirable to increase the maximum...Ch. 29 - Which graph in Fig. P29.74 best represents the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
35. Consider the reaction.
The graph shows the concentration of Br2 as a function of time.
a. Use the g...
Chemistry: Structure and Properties (2nd Edition)
Why are the top predators in food chains most severely affected by pesticides such as DDT?
Campbell Essential Biology with Physiology (5th Edition)
Suppose you are culturing a microorganism that produces enough lactic acid to kill itself in a few days. a. How...
Microbiology: An Introduction
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
Researchers cross a corn plant that is pure - breeding forthe dominant traits colored aleurone (C1), full kerne...
Genetic Analysis: An Integrated Approach (3rd Edition)
What are the minimum and maximum ages of the island of Kauai? Minimum age: ______million yr Maximum age: ______...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A circular coil with 200 turns Las a radius of 2.0 cm. (a) What current through tire coil results in a magnetic dipole moment of 3.0 Am2? (b) What is the maximum torque that the coil will experience in a uniform field of strength 5.0102 ? (c) If tire angle between and B is 45°, what is the magnitude of tire torque on the coil? (d) What is the magnetic potential energy of coil for this orientation?arrow_forwardA circular loop of wire is held in a uniform magnetic field, with the plane of the loop perpendicular to the field lines. Which of the following will not cause a current to be induced in the loop? (a) crushing the loop (b) rotating the loop about an axis perpendicular to the field lines (c) keeping the orientation of the loop fixed and moving it along the field lines (d) pulling the loop out of the fieldarrow_forward(a) A 200Turn circular loop of radius 50.0 cm is vertical, with its axis on an east-west line. A current of 100 A circulates clockwise in the loop when viewed from the east. The Earth’s field here is due norm, parallel to me ground, with a strength of 3.00105T. What are 1he direction and magnitude of the torque on the loop? (b) Does this device have any practical applications as a motor?arrow_forward
- Review. A rod of mass m and radius R rests on two parallel rails (Fig. P28.23) that are a distance d apart and have a length L. The rod carries a current I in the direction shown and rolls along the rails without slipping. A uniform magnetic field B is directed perpendicular to the rod and the rails. If it starts from rest, what is the speed of the rod as it leaves the rails?arrow_forwardConsider the system pictured in Figure P28.26. A 15.0-cm horizontal wire of mass 15.0 g is placed between two thin, vertical conductors, and a uniform magnetic field acts perpendicular to the page. The wire is free to move vertically without friction on the two vertical conductors. When a 5.00-A current is directed as shown in the figure, the horizontal wire moves upward at constant velocity in the presence of gravity. (a) What forces act on the horizontal wire, and (b) under what condition is the wire able to move upward at constant velocity? (c) Find the magnitude and direction of the minimum magnetic Field required to move the wire at constant speed. (d) What happens if the magnetic field exceeds this minimum value? Figure P28.26arrow_forwardA circular coil of five turns and a diameter of 30.0 cm is oriented in a vertical plane with its axis perpendicular to the horizontal component of the Earths magnetic field. A horizontal compass placed at the coils center is made to deflect 45.0 from magnetic north by a current of 0.600 A in the coil. (a) What is the horizontal component of the Earths magnetic field? (b) The current in the coil is switched off. A dip needle is a magnetic compass mounted so that it can rotate in a vertical north-south plane. At this location, a dip needle makes an angle of 13.0s from the vertical. What is the total magnitude of the Earths magnetic field at this location?arrow_forward
- A conductor consists of a circular loop of radius K and two long, straight sections as shown in Figure P50.7. The wire lies in the plane of the paper and carries a current I. (a) What is the direction of the magnetic field at the center of the loop? (b) Find an expression for the magnitude of the magnetic field at the center of the loop.arrow_forwardA flip coil is a relatively simple device used to measure a magnetic field, It consists of a circular coil of N turns wound with fine conducting wire. The coil is attached to a ballistic galvanometer, a device that measures the total charge that passes through it. The coil is placed in a magnetic field B such that its face is perpendicular to the field. It is then flipped through 180°, and tire total charge Q that flows through the galvanometer is measured. (a) If the total resistance of tire coil and galvanometer Is R, what is the relationship between B and Q? Because the coil is very small, you can assume that Bis uniform over it. (b) How can you determine whether or not tire magnetic field is perpendicular to the face of the coil?arrow_forwardDetermine the magnetic field (in terms of I, a, and d) at the origin due to the current loop in Figure P29.9. The loop extends to infinity above the figure. Figure P29.9arrow_forward
- A proton moving horizontally enters a region where a uniform magnetic field is directed perpendicular to the proton's velocity as shown in Figure OQ29.4. After the proton enters the field, does it (a) deflect downward, with its speed remaining constant; (b) deflect upward, moving in a semicircular path with constant speed, and exit the field moving to the left; (c) continue to move in the horizontal direction with constant velocity; (d) move in a circular orbit and become trapped by the field; or (e) deflect out of the plane of the paper?arrow_forwardWe have seen that a long solenoid produces a uniform magnetic field directed along the axis of a cylindrical region. To produce a uniform magnetic field directed parallel to a diameter of a cylindrical region, however, one can use the saddle coils illustrated in Figure P29.46. The loops are wrapped over a long, somewhat flattened tube. Figure P29.46a shows one wrapping of wire around the tube. This wrapping is continued in this manner until the visible side has many long sections of wire carrying current to the left in Figure P29.46a and the back side has many lengths carrying current to the right. The end view of the tube in Figure P29.46b shows these wires and the currents they carry. By wrapping the wires carefully, the distribution of wires can take the shape suggested in the end view such that the overall current distribution is approximately the superposition of two overlapping, circular cylinders of radius R (shown by the dashed lines) with uniformly distributed current, one toward you and one away from you. The current density J is the same for each cylinder. The center of one cylinder is described by a position vector d relative to the center of the other cylinder. Prove that the magnetic field inside the hollow tube is 0Jd/2 downward. Suggestion: The use of vector methods simplifies the calculation.arrow_forwardA long, straight wire carries a current I (Fig. OQ30.8). Which of the following statements is tine regarding the magnetic field due to the wire? More than one statement may be correct, (a) The magnitude is proportional to I/r, and the direction is out of the page at P. (b) The magnitude is proportional to I/r2, and the direction is out of the page at P. (c) The magnitude is proportional to I/r, and the direction is into the page at P. (d) The magnitude is proportional to I/r2, and the direction is into the page at P. (e) The magnitude is proportional to I, but does not depend on r.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY