University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 29.45E
(a)
To determine
The resultant magnetic field
(b)
To determine
The resultant magnetic field
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 0.50 T magnetic field is applied to a paramagnetic gas whose atoms have an intrinsic magnetic dipole moment of 1.0* 10^23 J/T. At what temperature will the mean kinetic energy of translation of the atoms equal the energy required to reverse such a dipole end for end in this magnetic field?
A sample of paramagnetic salt contains 2.0 × 1024 atomic dipoles each of dipole moment 1.5×10-23 J T-1. The sample is placed under a homogeneous magnetic field of 0.64 T, and cooled to a temperature of 4.2 K. The degree of magnetic saturation achieved is equal to 15%. What is the total dipole moment of the sample for a magnetic field of 0.98 T and a temperature of 2.8 K? (Assume Curie’s law)
The angular momentum of a mass distribution where a differential element particle of mass m with velocity v and located
at position r is defined in the form
L =
dmr x v =
dvpr x v,
p= nm
where n is the number of particles per unit volume and m is its mass. If each of the particles has a charge q, with their
movement they constitute a current
J = nqv
Show that the relationship between the magnetic dipole moment and the angular momentum is
L
m =
2m
where the magnetic moment is defined
m =
dvr x J
Chapter 29 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 29.2 - The accompanying figure shows a wire coil being...Ch. 29.3 - (a) Suppose the magnet in Fig. 29.14a were...Ch. 29.4 - The earths magnetic field points toward (magnetic)...Ch. 29.5 - If you wiggle a magnet back and forth in your...Ch. 29.6 - Prob. 29.6TYUCh. 29.7 - Prob. 29.7TYUCh. 29 - A sheet of copper is placed between the poles of...Ch. 29 - Prob. 29.2DQCh. 29 - Prob. 29.3DQCh. 29 - Prob. 29.4DQ
Ch. 29 - A long, straight conductor passes through the...Ch. 29 - A student asserted that if a permanent magnet is...Ch. 29 - An airplane is in level flight over Antarctica,...Ch. 29 - Consider the situation in Exercise 29.21. In part...Ch. 29 - Prob. 29.9DQCh. 29 - Prob. 29.10DQCh. 29 - Example 29.6 discusses the external force that...Ch. 29 - In the situation shown in Fig. 29.18, would it be...Ch. 29 - Prob. 29.13DQCh. 29 - Small one-cylinder gasoline engines sometimes use...Ch. 29 - Does Lenzs law say that the induced current in a...Ch. 29 - Does Faradays law say that a large magnetic flux...Ch. 29 - Can one have a displacement current as well as a...Ch. 29 - Prob. 29.18DQCh. 29 - Match the mathematical statements of Maxwells...Ch. 29 - If magnetic monopoles existed, the right-hand side...Ch. 29 - Prob. 29.21DQCh. 29 - A single loop of wire with an area of 0.0900 m2 is...Ch. 29 - In a physics laboratory experiment, a coil with...Ch. 29 - Search Coils and Credit Cards. One practical way...Ch. 29 - A closely wound search coil (see Exercise 29.3)...Ch. 29 - A circular loop of wire with a radius of 12.0 cm...Ch. 29 - CALC A coil 4.00 cm in radius, containing 500...Ch. 29 - Prob. 29.7ECh. 29 - CALC A flat, circular, steel loop of radius 75 cm...Ch. 29 - Shrinking Loop. A circular loop of flexible iron...Ch. 29 - A closely wound rectangular coil of 80 turns has...Ch. 29 - CALC In a region of space, a magnetic field points...Ch. 29 - In many magnetic resonance imaging (MRI) systems,...Ch. 29 - The armature of a small generator consists of a...Ch. 29 - A flat, rectangular coil of dimensions l and w is...Ch. 29 - A circular loop of wire is in a region of...Ch. 29 - The current I in a long, straight wire is constant...Ch. 29 - Two closed loops A and C are close to a long wire...Ch. 29 - The current in Fig. E29.18 obeys the equation I(t)...Ch. 29 - Prob. 29.19ECh. 29 - A cardboard tube is wrapped with two windings of...Ch. 29 - A small, circular ring is inside a larger loop...Ch. 29 - A circular loop of wire with radius r = 0.0480 m...Ch. 29 - CALC A circular loop of wire with radius r =...Ch. 29 - A rectangular loop of wire with dimensions 1.50 cm...Ch. 29 - In Fig. E29.25 a conducting rod of length L = 30.0...Ch. 29 - A rectangle measuring 30.0 cm by 40.0 cm is...Ch. 29 - Are Motional emfs a Practical Source of...Ch. 29 - Motional emfs in Transportation. Airplanes and...Ch. 29 - The conducting rod ab shown in Fig. E29.29 makes...Ch. 29 - A 0.650-m-long metal bar is pulled to the right at...Ch. 29 - A 0.360-m-long metal bar is pulled to the left by...Ch. 29 - Prob. 29.32ECh. 29 - A 0.250-m-long bar moves on parallel rails that...Ch. 29 - Prob. 29.34ECh. 29 - Prob. 29.35ECh. 29 - A metal ring 4.50 cm in diameter is placed between...Ch. 29 - Prob. 29.37ECh. 29 - Prob. 29.38ECh. 29 - A long, thin solenoid has 400 turns per meter and...Ch. 29 - Prob. 29.40ECh. 29 - A long, straight solenoid with a cross-sectional...Ch. 29 - Prob. 29.42ECh. 29 - Prob. 29.43ECh. 29 - CALC In Fig. 29.23 the capacitor plates have area...Ch. 29 - Prob. 29.45ECh. 29 - A very long, rectangular loop of wire can slide...Ch. 29 - CP CALC In the circuit shown in Fig. P29.47, the...Ch. 29 - Prob. 29.48PCh. 29 - CALC A very long, straight solenoid with a...Ch. 29 - Prob. 29.50PCh. 29 - In Fig. P29.51 the loop is being pulled lo the...Ch. 29 - Make a Generator? You are shipwrecked on a...Ch. 29 - A flexible circular loop 6.50 cm in diameter lies...Ch. 29 - CALC A conducting rod with length L = 0.200 m,...Ch. 29 - Prob. 29.55PCh. 29 - CP CALC Terminal Speed. A bar of length L = 0.36 m...Ch. 29 - CALC The long, straight wire shown in Fig. P29.57a...Ch. 29 - CALC A circular conducting ring with radius r0 =...Ch. 29 - CALC A slender rod, 0.240 m long, rotates with an...Ch. 29 - A 25.0-cm-long metal rod lies in the .xy-plane and...Ch. 29 - CP CALC A rectangular loop with width L and a...Ch. 29 - CALC An airplane propeller of total length L...Ch. 29 - The magnetic field B, at all points within a...Ch. 29 - CP CALC A capacitor has two parallel plates with...Ch. 29 - Prob. 29.65PCh. 29 - Prob. 29.66PCh. 29 - DATA You are conducting an experiment in which a...Ch. 29 - DATA You measure the magnitude of the external...Ch. 29 - A metal bar with length L, mass m, and resistance...Ch. 29 - CP CALC A square, conducting, wire loop of side L,...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - BIO STIMULATING THE BRAIN. Communication in the...Ch. 29 - It may be desirable to increase the maximum...Ch. 29 - Which graph in Fig. P29.74 best represents the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Niels Bohr’s 1913 model of the hydrogen atom, the single electron is in a circular orbit of radius 5.29 × 10−11 m and its speed is 2.19 × 106 m/s. (a) What is the magnitude of the magnetic moment due to the electron’s motion? (b) If the electron moves in a horizontal circle, counterclockwise as seen from above, what is the direction of this magnetic moment vector?arrow_forwardA long, solid, cylindrical conductor of radius 3.0 cm carries a current of 50 A distributed uniformly over its cross-section. Plot the magnetic field as a function of the radial distance r from the center of the conductor.arrow_forwardThe magnetic dipole moment of the gadolinium atom is about 6.3 ✕ 10−23 A · m2. (a) Calculate the maximum magnetic dipole moment (in A · m2) of a domain consisting of 1019 gadolinium atoms. (b) What current (in A) would have to flow through a single circular loop of wire of diameter 1.2 cm to produce the magnetic dipole moment you calculated?arrow_forward
- A Paramagnetic material has 1028atoms/m3. The magnetic moment of each atom is 2.8 × 10−23Am3.Calculate the Paramagnetic susceptibility at 200K. What would be the dipole moment of a bar of this material 1meter long and 1square-cm cross-section placed in a field of 6 × 106A/marrow_forwardIn Fig. 2, an electron with an initial kinetic energy of 5.0 keV enters region 1 at time t= 0. That region contains a uniform magnetic field directed into the page, with magnitude 0.010 T. The electron goes through a half circle and then exits region 1, headed toward region 2 across a gap of 25.0 cm. There is an electric potential diference AV= 2000 V across the gap, with a polarity such that the electron's speed increases uniformly as it traverses the gap. Region 2 contains a uniform magnetic field directed out of the page, with magnitude 0.020 T. The elctron goes through a half circle and then leaves region 2. At what time t does it leave? (e= 1.6 × 10-19 C, mẹ = 9.11 × 10-3' kg) Region 1 I av AV Region 2 O B2 Fig. 2arrow_forwardA current with a constant current density of Js= 1/π (A/m²) in the +z direction through the wire of radius a= 2 m, inside radius = 3m. And from the infinitely long cylindrical shell with a tooth radius of c=4m, a constant I=4 Ampere current flows homogeneously in the -z direction. Accordingly, using the Ampere formula, calculate the magnetic field in the regions r <a, a<r<b, b<r<c , and r>c.arrow_forward
- In the upper half space, which is the empty space, I = 7 A current flows from the infinitely long wire along the y axis that intersects the z axis at the point C (0,0,10). Half-space z <0 is from a material with relative magnetic permeability µr = 5. Magnetic field in terms of given magnitudes Hx + Hy + Hz =? write it numerically.arrow_forwardProblem 7: An alpha particle (consisting of two protons and two neutrons), traveling at a speed of v = 1.4 x 105 m/s, enters a region of constant magnetic fi eld of strength B = 1.8 T as shown in the fi gure. The direction of B is out of the image. The alpha follows a path that is a circular arc of radius r. Part (a) In atomic mass units, what is the mass m of an alpha particle? Part (b) In units of elementary charge e, what is the electric charge q of an alpha particle? Part (c) In meters, what is the radius of curvature r of the path taken by the alpha particle?arrow_forwardThe magnetic field B due to a small current loop (which is placed at the origin) is called a magnetic dipole. Let p = (x² + y² + z²)¹/² For p large, B = curl(A), where A = (-33, -3,0) R Current loop (a) Let C be a horizontal circle of radius R with center (0, 0, c), and parameterization c(t) where c is large. Which of the following correctly explains why A is tangent to C? A(c(t)) = So, A(c(t)) = A(c(t)) -(-² A(c(t)) = = A(c(t)) cos(0,0) p3 (1). Therefore, A is parallel to c'(t) and tangent to C. Rcos(t) R sin(t) = (-OS R sin(t) R cos(1) p³ So, A(c(1)) = -c'(1). Therefore, A is parallel to c'(t) and tangent to C. O BdS = = and c'(t)= (-R sin(t), R cos(t), 0) Rin(1,0) and c'(t) = (R cos(1), -R sin(1), 0) So, A(c(t)) c(t) = 0. Therefore, A is perpendicular to c'(t) and tangent to C. O R sin(1) R cos(1) (R$ R COS(0,0) and c'(t) = (R cos(t), - R sin(t), 0) R cos(1) p3 So, A(c(t)) - c'(t) = 0. Therefore, A is perpendicular to c' (t) and tangent to C. R sin(t) - and c'(t)= (-R sin(t), R…arrow_forward
- To solve problems, you will need to know the formula and orientation of the magnetic field with respect to the current. The formula, B=u0I/2piR, describes the magnetic field B at a distance R from a straight wire carrying current I. u0= 4π*10-7 N/A2 and is called the permeability of free space. Magnetic field is in the units of Tesla (T) and has direction. The field lines "curl" around the wire on a plane perpendicular to the wire as shown below. The direction of this magnetic field "curl" is in the direction of [ans1] 29.3.3 demo.JPG 29.3.3a.png Group of answer choices your curled fingers when your right thumb points along the current direction the plane of the wire that your fingers point to your thumb when your fingers of either hand are curled around the wire the opposing induced field produced by the currentarrow_forwardA strip of copper 150 mm thick and 4.5 mm wide is placed in a uniform magnetic field of magnitude 0.65 T, with perpendicular to the strip. A current i = 23 A is then sent through the strip such that a Hall potential difference V appears across the width of the strip. Calculate V. (The number of charge carriers per unit volume for copper is 8.47* 10^28 electrons/m3.)arrow_forwardA bismuth ball of radius r=5 mm is placed in a magnetic field of induction vector B=2*10^(-5) T. What is the magnetic moment of the ball? What is its direction? The magnetic susceptibility of bismuth is -7.6*10^(-4).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning