Organic Chemistry
Organic Chemistry
9th Edition
ISBN: 9781305080485
Author: John E. McMurry
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 28.SE, Problem 27AP
Interpretation Introduction

a)

Interpretation:

List the DNA sequences from which the RNA codons were transcribed.

AAU

Concept introduction:

The main function of messenger RNA (mRNA) is to give the direction to biosynthesis of thousands of diverse peptides and proteins required by organisms. The mechanics of protein biosynthesis take place on ribosomes, small granular particles in the cytoplasm of a cell that consist of 60% ribosomal RNA and 40% protein.

In DNA replication both the strands are copied. The DNA strand that contains gene is called coding strand or sense strand. The DNA strand which gets transcribed is called antisense strand or non-coding strand. During this process only one strand is transcribed into RNA strand.

The sense and the antisense strand in DNA are complemetary to each other. The DNA antisense strand and the newly formed RNA strand are also complementary; the RNA molecule produced during transcription is a copy of the DNA sense strand. That is, the complement of the complement is the same as the original.

Note: The bounded amino acid sequence is always written from 5’→3’ direction. The codon sequences on mRNA are read by tRNA which are having complementary anticodon base.

Expert Solution
Check Mark

Answer to Problem 27AP

The base sequence in the original DNA strand can be obtained as:

mRNA strand:

(5’)-AAU-(3’)

The antisense DNA strand will be the complement of mRNA:

Antisense DNA:

(3’)-TTA-(5’)

The base sequence in the original DNA strand can be obtained as:

Explanation of Solution

The original DNA sequence on which mRNA is formed is none other than antisense DNA. mRNA is a complement of antisense DNA which is formed by replacing (A by U, C by G, T by A and G by C).

Conclusion

The base sequence in the original DNA strand can be obtained as:

mRNA strand:

(5’)-AAU-(3’)

The antisense DNA strand will be the complement of mRNA:

Antisense DNA:

(3’)-TTA-(5’)

The base sequence in the original DNA strand can be obtained as:

Interpretation Introduction

b)

Interpretation:

List the DNA sequences from which the RNA codons were transcribed.

GAG

Concept introduction:

The main function of messenger RNA (mRNA) is to give the direction to biosynthesis of thousands of diverse peptides and proteins required by organisms. The mechanics of protein biosynthesis take place on ribosomes, small granular particles in the cytoplasm of a cell that consist of 60% ribosomal RNA and 40% protein.

In DNA replication both the strands are copied. The DNA strand that contains gene is called coding strand or sense strand. The DNA strand which gets transcribed is called antisense strand or non-coding strand. During this process only one strand is transcribed into RNA strand.

The sense and the antisense strand in DNA are complemetary to each other. The DNA antisense strand and the newly formed RNA strand are also complementary; the RNA molecule produced during transcription is a copy of the DNA sense strand. That is, the complement of the complement is the same as the original.

Note: The bounded amino acid sequence is always written from 5’→3’ direction. The codon sequences on mRNA are read by tRNA which are having complementary anticodon base.

Expert Solution
Check Mark

Answer to Problem 27AP

The base sequence in the original DNA strand can be obtained as:

mRNA strand:

(5’)-GAG-(3’)

The antisense DNA strand will be the complement of mRNA:

Antisense DNA:

(3’)-CTC-(5’)

The base sequence in the original DNA strand can be obtained as:

Explanation of Solution

The original DNA sequence on which mRNA is formed is none other than antisense DNA. mRNA is a complement of antisense DNA which is formed by replacing (A by U, C by G, T by A and G by C).

Conclusion

The base sequence in the original DNA strand can be obtained as:

mRNA strand:

(5’)-GAG-(3’)

The antisense DNA strand will be the complement of mRNA:

Antisense DNA:

(3’)-CTC-(5’)

The base sequence in the original DNA strand can be obtained as:

Interpretation Introduction

c)

Interpretation:

List the DNA sequences from which the RNA codons were transcribed.

UCC

Concept introduction:

The main function of messenger RNA (mRNA) is to give the direction to biosynthesis of thousands of diverse peptides and proteins required by organisms. The mechanics of protein biosynthesis take place on ribosomes, small granular particles in the cytoplasm of a cell that consist of 60% ribosomal RNA and 40% protein.

In DNA replication both the strands are copied. The DNA strand that contains gene is called coding strand or sense strand. The DNA strand which gets transcribed is called antisense strand or non-coding strand. During this process only one strand is transcribed into RNA strand.

The sense and the antisense strand in DNA are complemetary to each other. The DNA antisense strand and the newly formed RNA strand are also complementary; the RNA molecule produced during transcription is a copy of the DNA sense strand. That is, the complement of the complement is the same as the original.

Note: The bounded amino acid sequence is always written from 5’→3’ direction. The codon sequences on mRNA are read by tRNA which are having complementary anticodon base.

Expert Solution
Check Mark

Answer to Problem 27AP

The base sequence in the original DNA strand can be obtained as:

mRNA strand:

(5’)-UCC-(3’)

The antisense DNA strand will be the complement of mRNA:

Antisense DNA:

(3’)-AGG-(5’)

The base sequence in the original DNA strand can be obtained as:

Explanation of Solution

The original DNA sequence on which mRNA is formed is none other than antisense DNA. mRNA is a complement of antisense DNA which is formed by replacing (A by U, C by G, T by A and G by C).

Conclusion

The base sequence in the original DNA strand can be obtained as:

mRNA strand:

(5’)-UCC-(3’)

The antisense DNA strand will be the complement of mRNA:

Antisense DNA:

(3’)-AGG-(5’)

The base sequence in the original DNA strand can be obtained as:

Interpretation Introduction

d)

Interpretation:

List the DNA sequences from which the RNA codons were transcribed.

CAU

Concept introduction:

The main function of messenger RNA (mRNA) is to give the direction to biosynthesis of thousands of diverse peptides and proteins required by organisms. The mechanics of protein biosynthesis take place on ribosomes, small granular particles in the cytoplasm of a cell that consist of 60% ribosomal RNA and 40% protein.

In DNA replication both the strands are copied. The DNA strand that contains gene is called coding strand or sense strand. The DNA strand which gets transcribed is called antisense strand or non-coding strand. During this process only one strand is transcribed into RNA strand.

The sense and the antisense strand in DNA are complemetary to each other. The DNA antisense strand and the newly formed RNA strand are also complementary; the RNA molecule produced during transcription is a copy of the DNA sense strand. That is, the complement of the complement is the same as the original.

Note: The bounded amino acid sequence is always written from 5’→3’ direction. The codon sequences on mRNA are read by tRNA which are having complementary anticodon base.

Expert Solution
Check Mark

Answer to Problem 27AP

The base sequence in the original DNA strand can be obtained as:

mRNA strand:

(5’)-CAU-(3’)

The antisense DNA strand will be the complement of mRNA:

Antisense DNA:

(3’)-GTA-(5’)

The base sequence in the original DNA strand can be obtained as:

Explanation of Solution

The original DNA sequence on which mRNA is formed is none other than antisense DNA. mRNA is a complement of antisense DNA which is formed by replacing (A by U, C by G, T by A and G by C).

Conclusion

The base sequence in the original DNA strand can be obtained as:

mRNA strand:

(5’)-CAU-(3’)

The antisense DNA strand will be the complement of mRNA:

Antisense DNA:

(3’)-GTA-(5’)

The base sequence in the original DNA strand can be obtained as:

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following compounds. Please show your work. (8) SF2, CH,OH, C₂H₂ b) Based on your answers given above, list the compounds in order of their Boiling Point from low to high. (8)
19.78 Write the products of the following sequences of reactions. Refer to your reaction road- maps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18 roadmaps along with your new Chapter 19 roadmap for these. (a) 1. BHS 2. H₂O₂ 3. H₂CrO4 4. SOCI₂ (b) 1. Cl₂/hv 2. KOLBU 3. H₂O, catalytic H₂SO4 4. H₂CrO4 Reaction Roadmap An alkene 5. EtOH 6.0.5 Equiv. NaOEt/EtOH 7. Mild H₂O An alkane 1.0 2. (CH3)₂S 3. H₂CrO (d) (c) 4. Excess EtOH, catalytic H₂SO OH 4. Mild H₂O* 5.0.5 Equiv. NaOEt/EtOH An alkene 6. Mild H₂O* A carboxylic acid 7. Mild H₂O* 1. SOC₁₂ 2. EtOH 3.0.5 Equiv. NaOEt/E:OH 5.1.0 Equiv. NaOEt 6. NH₂ (e) 1. 0.5 Equiv. NaOEt/EtOH 2. Mild H₂O* Br (f) i H An aldehyde 1. Catalytic NaOE/EtOH 2. H₂O*, heat 3. (CH,CH₂)₂Culi 4. Mild H₂O* 5.1.0 Equiv. LDA Br An ester 4. NaOH, H₂O 5. Mild H₂O* 6. Heat 7. MgBr 8. Mild H₂O* 7. Mild H₂O+
Li+ is a hard acid.  With this in mind, which if the following compounds should be most soluble in water? Group of answer choices LiBr LiI LiF LiCl

Chapter 28 Solutions

Organic Chemistry

Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Nucleic acids - DNA and RNA structure; Author: MEDSimplified;https://www.youtube.com/watch?v=0lZRAShqft0;License: Standard YouTube License, CC-BY