Production and Operations Analysis, Seventh Edition
7th Edition
ISBN: 9781478623069
Author: Steven Nahmias, Tava Lennon Olsen
Publisher: Waveland Press, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2.6, Problem 15P
Summary Introduction
To determine: The estimate of the standard deviation of forecast error.
Introduction:
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the connection between using a tracking signal and statistical control limits
for forecast control?
Quarterly data for the failures of certain aircraft engines at a local military base during the last two years are 200, 250, 175, 186, 225, 285, 305, 190. Both three-quarter and six-quarter moving averages are used to forecast the numbers of engine failures. Determine the one-step-ahead forecasts for periods 4 through 8 using three-period moving averages, and the one-step-ahead forecasts for periods 7 and 8 using six-period moving averages.
What does the term biased mean in reference to a particular forecasting technique?
Chapter 2 Solutions
Production and Operations Analysis, Seventh Edition
Ch. 2.4 - Prob. 1PCh. 2.4 - Prob. 2PCh. 2.4 - Prob. 3PCh. 2.4 - Prob. 4PCh. 2.4 - Prob. 5PCh. 2.4 - Prob. 6PCh. 2.4 - Prob. 7PCh. 2.4 - Prob. 8PCh. 2.4 - Prob. 9PCh. 2.6 - Prob. 10P
Ch. 2.6 - Prob. 11PCh. 2.6 - Prob. 12PCh. 2.6 - Prob. 13PCh. 2.6 - Prob. 14PCh. 2.6 - Prob. 15PCh. 2.7 - Prob. 16PCh. 2.7 - Prob. 17PCh. 2.7 - Prob. 18PCh. 2.7 - Prob. 19PCh. 2.7 - Prob. 20PCh. 2.7 - Prob. 21PCh. 2.7 - Prob. 22PCh. 2.7 - Prob. 23PCh. 2.7 - Prob. 24PCh. 2.7 - Prob. 25PCh. 2.7 - Prob. 26PCh. 2.7 - Prob. 27PCh. 2.8 - Prob. 28PCh. 2.8 - Prob. 29PCh. 2.8 - Prob. 30PCh. 2.8 - Prob. 31PCh. 2.8 - Prob. 32PCh. 2.9 - Prob. 33PCh. 2.9 - Prob. 34PCh. 2.9 - Prob. 35PCh. 2.9 - Prob. 36PCh. 2.9 - Prob. 37PCh. 2.10 - Prob. 38PCh. 2.10 - Prob. 42PCh. 2.10 - Prob. 43PCh. 2.10 - Prob. 44PCh. 2.10 - Prob. 45PCh. 2 - Prob. 47APCh. 2 - Prob. 48APCh. 2 - Prob. 49APCh. 2 - Prob. 50APCh. 2 - Prob. 51APCh. 2 - Prob. 52APCh. 2 - Prob. 53APCh. 2 - Prob. 54APCh. 2 - Prob. 55APCh. 2 - Prob. 56APCh. 2 - Prob. 57APCh. 2 - Prob. 58AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Under what conditions might a firm use multiple forecasting methods?arrow_forwardThe owner of a restaurant in Bloomington, Indiana, has recorded sales data for the past 19 years. He has also recorded data on potentially relevant variables. The data are listed in the file P13_17.xlsx. a. Estimate a simple regression equation involving annual sales (the dependent variable) and the size of the population residing within 10 miles of the restaurant (the explanatory variable). Interpret R-square for this regression. b. Add another explanatory variableannual advertising expendituresto the regression equation in part a. Estimate and interpret this expanded equation. How does the R-square value for this multiple regression equation compare to that of the simple regression equation estimated in part a? Explain any difference between the two R-square values. How can you use the adjusted R-squares for a comparison of the two equations? c. Add one more explanatory variable to the multiple regression equation estimated in part b. In particular, estimate and interpret the coefficients of a multiple regression equation that includes the previous years advertising expenditure. How does the inclusion of this third explanatory variable affect the R-square, compared to the corresponding values for the equation of part b? Explain any changes in this value. What does the adjusted R-square for the new equation tell you?arrow_forwardThe file P13_42.xlsx contains monthly data on consumer revolving credit (in millions of dollars) through credit unions. a. Use these data to forecast consumer revolving credit through credit unions for the next 12 months. Do it in two ways. First, fit an exponential trend to the series. Second, use Holts method with optimized smoothing constants. b. Which of these two methods appears to provide the best forecasts? Answer by comparing their MAPE values.arrow_forward
- The Baker Company wants to develop a budget to predict how overhead costs vary with activity levels. Management is trying to decide whether direct labor hours (DLH) or units produced is the better measure of activity for the firm. Monthly data for the preceding 24 months appear in the file P13_40.xlsx. Use regression analysis to determine which measure, DLH or Units (or both), should be used for the budget. How would the regression equation be used to obtain the budget for the firms overhead costs?arrow_forwardThe file P13_29.xlsx contains monthly time series data for total U.S. retail sales of building materials (which includes retail sales of building materials, hardware and garden supply stores, and mobile home dealers). a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forwardThe file P13_22.xlsx contains total monthly U.S. retail sales data. While holding out the final six months of observations for validation purposes, use the method of moving averages with a carefully chosen span to forecast U.S. retail sales in the next year. Comment on the performance of your model. What makes this time series more challenging to forecast?arrow_forward
- Do the sales prices of houses in a given community vary systematically with their sizes (as measured in square feet)? Answer this question by estimating a simple regression equation where the sales price of the house is the dependent variable, and the size of the house is the explanatory variable. Use the sample data given in P13_06.xlsx. Interpret your estimated equation, the associated R-square value, and the associated standard error of estimate.arrow_forwardThe file P13_02.xlsx contains five years of monthly data on sales (number of units sold) for a particular company. The company suspects that except for random noise, its sales are growing by a constant percentage each month and will continue to do so for at least the near future. a. Explain briefly whether the plot of the series visually supports the companys suspicion. b. By what percentage are sales increasing each month? c. What is the MAPE for the forecast model in part b? In words, what does it measure? Considering its magnitude, does the model seem to be doing a good job? d. In words, how does the model make forecasts for future months? Specifically, given the forecast value for the last month in the data set, what simple arithmetic could you use to obtain forecasts for the next few months?arrow_forwardThe file P13_26.xlsx contains the monthly number of airline tickets sold by the CareFree Travel Agency. a. Create a time series chart of the data. Based on what you see, which of the exponential smoothing models do you think will provide the best forecasting model? Why? b. Use simple exponential smoothing to forecast these data, using a smoothing constant of 0.1. c. Repeat part b, but search for the smoothing constant that makes RMSE as small as possible. Does it make much of an improvement over the model in part b?arrow_forward
- The file P13_28.xlsx contains monthly retail sales of U.S. liquor stores. a. Is seasonality present in these data? If so, characterize the seasonality pattern. b. Use Winters method to forecast this series with smoothing constants = = 0.1 and = 0.3. Does the forecast series seem to track the seasonal pattern well? What are your forecasts for the next 12 months?arrow_forwardMonth Demand Forecast Error 1 20 2 18 3 21 4 25 5 24 6 27 7 22 8 30 9 23 10 20 11 29 12 22 Mean Abs Error Problem 6: The demand manager of Maverick Jeans is responsible for ensuring sufficient warehouse space for the finished jeans that come from the production plants. It has occasionally been necessary to rent public warehouse space, something that Maverick would like to avoid. In order to estimate the space requirements the demand manager is evaluating moving-average forecasts. The demand (in 1,000 case units) for the last fiscal year is shown below. Bias MAD (mean error) Month 1 2 3 4 5 6 7 8 9 10 11 12 Demand 20 18 21 25 24 27 22 30 23 20 29 22 Use a three-month moving average to estimate the month-in- advance forecast of demand for months 4-12. Calculate the Bias and MAD. (Note: Adjust all cell values to two decimal points.)arrow_forwardAdditional Algo 15-12 Forecasting with Seasonality Demand history for the past three years is shown below, along with the seasonal indices for each quarter. Seasonal Index 1.25 Year Year 1 Year 2 Year 3 Quarter 01 02 03 04 01 02 03 04 01 02 03 04 Year 4, 01 forecast Demand 926 819 585 515 912 874 651 552 861 828 571 542 1.176 0.837 0.745 1.25 1.176 0.837 0.745 1.25 1.176 0.837 0.745 Use exponential smoothing with alpha (a) - 0.3 and an initial forecast of 720 along with seasonality to calculate the Year 4, Q1 forecast. Note: Do not round intermediate calculations. Round your answer to the nearest whole number.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Contemporary MarketingMarketingISBN:9780357033777Author:Louis E. Boone, David L. KurtzPublisher:Cengage LearningMarketingMarketingISBN:9780357033791Author:Pride, William MPublisher:South Western Educational PublishingPractical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Contemporary Marketing
Marketing
ISBN:9780357033777
Author:Louis E. Boone, David L. Kurtz
Publisher:Cengage Learning
Marketing
Marketing
ISBN:9780357033791
Author:Pride, William M
Publisher:South Western Educational Publishing
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License