Production and Operations Analysis, Seventh Edition
7th Edition
ISBN: 9781478623069
Author: Steven Nahmias, Tava Lennon Olsen
Publisher: Waveland Press, Inc.
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2.7, Problem 23P
Summary Introduction
To explain: The comparison and difference of exponential smoothing when
Introduction:Exponential smoothing is a technique of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Compare the exponential smoothing model when a=0 and when a=1
snip
Bo
Using data from 50 workers, a researcher estimates Wage = ẞe + B₁Education + B2Experience + B3Age + ε, where Wage is the
hourly wage rate and Education, Experience, and Age are the years of higher education, the years of experience, and the age of the
worker, respectively. A portion of the regression results is shown in the following table.
Intercept
Education
Experience
Age
Coefficients
Standard
Error
t Stat
p-Value
7.17
4.26
1.68
0.0991
1.81
0.35
5.17
0.0000
0.45
0.10
4.50
0.0000
-0.01
0.06
-0.17
0.8684
a-1. Interpret the point estimate for ẞ1.
As Education increases by 1 year, Wage is predicted to increase by 1.81/hour.
As Education increases by 1 year, Wage is predicted to increase by 0.45/hour.
As Education increases by 1 year, Wage is predicted to increase by 1.81/hour, holding Age and Experience constant.
As Education increases by 1 year, Wage is predicted to increase by 0.45/hour, holding Age and Experience constant.
a-2. Interpret the point estimate for $2.
As Experience…
Chapter 2 Solutions
Production and Operations Analysis, Seventh Edition
Ch. 2.4 - Prob. 1PCh. 2.4 - Prob. 2PCh. 2.4 - Prob. 3PCh. 2.4 - Prob. 4PCh. 2.4 - Prob. 5PCh. 2.4 - Prob. 6PCh. 2.4 - Prob. 7PCh. 2.4 - Prob. 8PCh. 2.4 - Prob. 9PCh. 2.6 - Prob. 10P
Ch. 2.6 - Prob. 11PCh. 2.6 - Prob. 12PCh. 2.6 - Prob. 13PCh. 2.6 - Prob. 14PCh. 2.6 - Prob. 15PCh. 2.7 - Prob. 16PCh. 2.7 - Prob. 17PCh. 2.7 - Prob. 18PCh. 2.7 - Prob. 19PCh. 2.7 - Prob. 20PCh. 2.7 - Prob. 21PCh. 2.7 - Prob. 22PCh. 2.7 - Prob. 23PCh. 2.7 - Prob. 24PCh. 2.7 - Prob. 25PCh. 2.7 - Prob. 26PCh. 2.7 - Prob. 27PCh. 2.8 - Prob. 28PCh. 2.8 - Prob. 29PCh. 2.8 - Prob. 30PCh. 2.8 - Prob. 31PCh. 2.8 - Prob. 32PCh. 2.9 - Prob. 33PCh. 2.9 - Prob. 34PCh. 2.9 - Prob. 35PCh. 2.9 - Prob. 36PCh. 2.9 - Prob. 37PCh. 2.10 - Prob. 38PCh. 2.10 - Prob. 42PCh. 2.10 - Prob. 43PCh. 2.10 - Prob. 44PCh. 2.10 - Prob. 45PCh. 2 - Prob. 47APCh. 2 - Prob. 48APCh. 2 - Prob. 49APCh. 2 - Prob. 50APCh. 2 - Prob. 51APCh. 2 - Prob. 52APCh. 2 - Prob. 53APCh. 2 - Prob. 54APCh. 2 - Prob. 55APCh. 2 - Prob. 56APCh. 2 - Prob. 57APCh. 2 - Prob. 58AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- The Baker Company wants to develop a budget to predict how overhead costs vary with activity levels. Management is trying to decide whether direct labor hours (DLH) or units produced is the better measure of activity for the firm. Monthly data for the preceding 24 months appear in the file P13_40.xlsx. Use regression analysis to determine which measure, DLH or Units (or both), should be used for the budget. How would the regression equation be used to obtain the budget for the firms overhead costs?arrow_forwardDo the sales prices of houses in a given community vary systematically with their sizes (as measured in square feet)? Answer this question by estimating a simple regression equation where the sales price of the house is the dependent variable, and the size of the house is the explanatory variable. Use the sample data given in P13_06.xlsx. Interpret your estimated equation, the associated R-square value, and the associated standard error of estimate.arrow_forwardThe owner of a restaurant in Bloomington, Indiana, has recorded sales data for the past 19 years. He has also recorded data on potentially relevant variables. The data are listed in the file P13_17.xlsx. a. Estimate a simple regression equation involving annual sales (the dependent variable) and the size of the population residing within 10 miles of the restaurant (the explanatory variable). Interpret R-square for this regression. b. Add another explanatory variableannual advertising expendituresto the regression equation in part a. Estimate and interpret this expanded equation. How does the R-square value for this multiple regression equation compare to that of the simple regression equation estimated in part a? Explain any difference between the two R-square values. How can you use the adjusted R-squares for a comparison of the two equations? c. Add one more explanatory variable to the multiple regression equation estimated in part b. In particular, estimate and interpret the coefficients of a multiple regression equation that includes the previous years advertising expenditure. How does the inclusion of this third explanatory variable affect the R-square, compared to the corresponding values for the equation of part b? Explain any changes in this value. What does the adjusted R-square for the new equation tell you?arrow_forward
- The management of a technology company is trying to determine the variable that best explains the variation of employee salaries using a sample of 52 full-time employees; see the file P13_08.xlsx. Estimate simple linear regression equations to identify which of the following has the strongest linear relationship with annual salary: the employees gender, age, number of years of relevant work experience prior to employment at the company, number of years of employment at the company, or number of years of post secondary education. Provide support for your conclusion.arrow_forwardSuppose that a regional express delivery service company wants to estimate the cost of shipping a package (Y) as a function of cargo type, where cargo type includes the following possibilities: fragile, semifragile, and durable. Costs for 15 randomly chosen packages of approximately the same weight and same distance shipped, but of different cargo types, are provided in the file P13_16.xlsx. a. Estimate a regression equation using the given sample data, and interpret the estimated regression coefficients. b. According to the estimated regression equation, which cargo type is the most costly to ship? Which cargo type is the least costly to ship? c. How well does the estimated equation fit the given sample data? How might the fit be improved? d. Given the estimated regression equation, predict the cost of shipping a package with semifragile cargo.arrow_forwardThe file P13_22.xlsx contains total monthly U.S. retail sales data. While holding out the final six months of observations for validation purposes, use the method of moving averages with a carefully chosen span to forecast U.S. retail sales in the next year. Comment on the performance of your model. What makes this time series more challenging to forecast?arrow_forward
- Management of a home appliance store wants to understand the growth pattern of the monthly sales of a new technology device over the past two years. The managers have recorded the relevant data in the file P13_05.xlsx. Have the sales of this device been growing linearly over the past 24 months? By examining the results of a linear trend line, explain why or why not.arrow_forwardAn operation analyst is forecasting this year's demand for one of his company's products based on the following historical data: (4 year ago Quantity sold was 10842), (3 year ago Quantity sold was 11881 ), (2 year ago Quantity sold was 16064 ) and the last year Quantity sold was 19273 . The previous trend line had predicted 12250 for three years ago, 13000 for two years ago and 13750 for last year. What was the mean absolute percent error (MAPE) for these forecasts? a. 16.95 b. 2739 c. 0.17 d. 2985arrow_forwardWhich one of the following models would be best for new product forecasting? Multiple Choice Simple Logistics Curve Winters’ Exponential Smoothing Gompertz Curve Holt’s Exponential Smoothingarrow_forward
- The following table gives the number of pints of type A blood used at Damascus Hospital in the past 6 weeks: Week Of August 31 September 7 September 14 September 21 September 28 October 5 Pints Used 360 389 412 378 366 371 a) The forecasted demand for the week of October 12 using a 3-week moving average: to two decimal places). = pints (round your responsearrow_forwardThe following data come from regression line projections: Compute the MAD and MSE.arrow_forwardIn year 2010, a saop manufacturer forecasts that demand of 2011 will be 200 lakhs of units of saop. Whereas the actual demand was 210 lakhs of saops , now using the smoothing constant choosen by the management of alpha is 0.30 , the manufacturer wants to forecast the 2012 demand using the exponential smoothing model , calculate the same .arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Single Exponential Smoothing & Weighted Moving Average Time Series Forecasting; Author: Matt Macarty;https://www.youtube.com/watch?v=IjETktmL4Kg;License: Standard YouTube License, CC-BY
Introduction to Forecasting - with Examples; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=98K7AG32qv8;License: Standard Youtube License