College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 7TP
To determine
The path for which light would travel from point A to point B faster.
The path which more accurately represents how a light ray would travel from point A to point B.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A light ray is traveling through the air (n=1.00) at angle= 35 degrees until it enters a lake (n=1.33).
1. What is the angle of any light reflected off the lake?
2. What is the angle of the refracted light?
3. Given the index of refraction and the speed of light constant, what is the velocity of the light in the air?
4. Given the index of refraction and the speed of light constant, what is the velocity of the light in the lake?
Please Asap
In vacuum, light is traveling at a 15 degree angle (with respect to the normal) before entering an
unknown substance. While in the unknown substance, the light refracts to an angle of 70 degrees
(with respect to the normal). Is this possible?
O Yes.
O No, the angle cannot change more than 45 degrees when going from one substance to another
O No, there is no refraction when going from vacuum to another substance, since n1 for vacuum.
O No, the index of refraction would have to be less than 1
Chapter 25 Solutions
College Physics
Ch. 25 - Using the law of reflection, explain how powder...Ch. 25 - Diffusion by reflection from a rough surface is...Ch. 25 - Why is the index of refraction always greater than...Ch. 25 - Does the fact that the light flash from lightning...Ch. 25 - Will light change direction toward or away from...Ch. 25 - Explain why an object in water always appears to...Ch. 25 - Explain why a person’s legs appeal very short when...Ch. 25 - Prob. 8CQCh. 25 - Suppose light were incident from air onto a...Ch. 25 - A ring with a colorless gemstone is dropped into...
Ch. 25 - A high-quality diamond may be quite clear and...Ch. 25 - Prob. 12CQCh. 25 - The most common type at mirage is an illusion that...Ch. 25 - It can he argued that a flat piece of glass, such...Ch. 25 - You can often see a reflection when looking at a...Ch. 25 - When you focus a camera, you adjust the distance...Ch. 25 - A thin lens has two focal points, one on either...Ch. 25 - Will the focal length of a lens change when it is...Ch. 25 - What are the differences between teal and virtual...Ch. 25 - Can you see a virtual image? Can you photograph...Ch. 25 - Is it necessary to project a real image onto a...Ch. 25 - At what distance is an image always locatedat do,...Ch. 25 - Under what circumstances will an image be located...Ch. 25 - What is meant by a negative magnification? What is...Ch. 25 - Can a case 1 image be larger than the object even...Ch. 25 - Prob. 26CQCh. 25 - Devise an arrangement of mirrors allowing you to...Ch. 25 - If you wish to see your entire body in a flat...Ch. 25 - It can be argued than a flat mirror has an in?nite...Ch. 25 - Why are diverging mirrors often used for rear-view...Ch. 25 - Prob. 1PECh. 25 - Prob. 2PECh. 25 - Light shows staged with lasers use moving mirrors...Ch. 25 - Prob. 4PECh. 25 - What is the speed of light in water? In glycerine?Ch. 25 - What is the speed of light in air? In crown glass?Ch. 25 - Calculate the index of refraction for a medium in...Ch. 25 - In what substance in Table 25.1 is the speed of...Ch. 25 - There was a major collision of an asteroid with...Ch. 25 - Prob. 10PECh. 25 - Components of some computers communicate with each...Ch. 25 - Prob. 12PECh. 25 - Suppose you have an unknown clear substance...Ch. 25 - On the Moon’s surface, lunar astronauts placed a...Ch. 25 - Prob. 15PECh. 25 - Prob. 16PECh. 25 - Unreasonable Results Suppose light travels from...Ch. 25 - Construct Your Own Problem Consider sunlight...Ch. 25 - Unreasonable Results Light traveling from water to...Ch. 25 - Verify that the critical angle for light going...Ch. 25 - (a) At the end of Example 25.4, it was stated that...Ch. 25 - An optical fiber uses flint glass clad with crown...Ch. 25 - At what minimum angle will you get total internal...Ch. 25 - Suppose you are using total internal reflection to...Ch. 25 - You can determine me index of refraction of a...Ch. 25 - Prob. 26PECh. 25 - Prob. 27PECh. 25 - (a) What is me ratio of the speed of red light to...Ch. 25 - A beam of white light goes from air into water at...Ch. 25 - By how much do the critical angles for red (660...Ch. 25 - (a) A narrow beam of light containing yellow (580...Ch. 25 - A parallel beam of light containing orange (610...Ch. 25 - A ray of 610 nm light goes from air into fused...Ch. 25 - A narrow beam of light containing red (660 nm) and...Ch. 25 - Prob. 35PECh. 25 - What is the power in diopters at a camera lens...Ch. 25 - Your camera's zoom lens has an adjustable focal...Ch. 25 - What is the focal length of 1.75 D reading glasses...Ch. 25 - You note that your prescription for new eyeglasses...Ch. 25 - How far from the lens must the film in a camera...Ch. 25 - A certain slide projector has a 100 mm focal...Ch. 25 - A doctor examines a mole with a 15.0 cm focal...Ch. 25 - How far from a piece of paper must you hold your...Ch. 25 - A camera with a 50.0 mm focal length lens is being...Ch. 25 - A camera lens used for taking close-up photographs...Ch. 25 - Suppose your 50.00 mm local length camera lens is...Ch. 25 - (a) What is the focal length of a magnifying glass...Ch. 25 - What magnification will be produced by a lens of...Ch. 25 - In Example 25.7, the magnification of a book held...Ch. 25 - Suppose a 200 mm focal length telephoto lens is...Ch. 25 - A camera with a 100 mm focal length lens is used...Ch. 25 - Combine thin lens equations to show that the...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - Some telephoto cameras use a mirror rather than a...Ch. 25 - (a) Calculate the focal length of the mirror...Ch. 25 - Find the magnification of the heater element in...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - A shopper standing 3.00 m from a convex security...Ch. 25 - An object 1.50 cm high is held 3.00 cm from a...Ch. 25 - Ray tracing for a flat mirror shows that the image...Ch. 25 - Show that for a flat mirror hi= ho, knowing that...Ch. 25 - Use the law of reflection to prove that the focal...Ch. 25 - Referring to the electric room heater considered...Ch. 25 - Consider a 250-W heat lamp fixed to the ceiling in...Ch. 25 - Prob. 1TPCh. 25 - Prob. 2TPCh. 25 - Prob. 3TPCh. 25 - Prob. 4TPCh. 25 - Prob. 5TPCh. 25 - Prob. 6TPCh. 25 - Prob. 7TPCh. 25 - Prob. 8TPCh. 25 - Prob. 9TPCh. 25 - Prob. 10TPCh. 25 - Prob. 11TPCh. 25 - Prob. 12TPCh. 25 - Prob. 13TPCh. 25 - Prob. 14TPCh. 25 - Prob. 15TPCh. 25 - Prob. 16TPCh. 25 - Prob. 17TPCh. 25 - Prob. 18TPCh. 25 - Prob. 19TPCh. 25 - Prob. 20TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What happens to a light wave when it hits a surface that has a higher index of refraction? a) It reflects with λ/2 phase shift. b) It reflects with a λ/4 phase shift. c) It's shift is porportional to the angle of reflection. d) It reflects with it's phase unshifted.arrow_forwardLight is travelling from air to diamond. The speed of light in diamond will be diamond=2.42 and speed of light in air = (refractive index of 3x10 m/s) Select one: a. 2 x 10° m/s b. 1.24 x 10° m/s C. 1.00 x 10 m/s Previous page Next pag e Quiz Experiment-2, Term-2, Jump to... Video-17, Critical Angle and Total Internal Reflection AY 20-21 Activate Windows 901 PM ENG 40/2021 Coparrow_forwardA ray of light traveling water is incident on an interface with a flat piece of glass. The wavelength of the light in the water (nwater = 1.333) is 726 nm and its wavelength in the glass is 544 nm. If the ray in water makes an angle of 56° with respect to the normal to the interface, what angle does the refracted ray in the glass make with respect to the normal? A. 25.4° В. 38.4° С. 43.8° D. 54.2°arrow_forward
- Edward and Calil do some experiments to determine the speed of light in a special transparent material. They determine the speed of light to be 0.23c. Edward shines a light thru the material. Determine the critical angle in degrees for the light ray if there is a chamber of air above the material. Please give your answer as a whole number. (c is the speed of light in vacuum)arrow_forwardplease answer these in a detailed way. which i can understand.[1] does light travel faster or slower in water than in air? why is this?[2] write down the three effects of refraction. [3] what is energy? how many types of energy are there?[4] what is the difference between concave and convex lens?[5] write down three ways of refraction.[6] name the colors in the spectrum of the white light.again: please detail these a bit, not fully, but please detail them in a way i can understand, thank you very much.arrow_forwardTwo light sources of identical strength are placed 10m apart. An object is to be placed at a point P on a line l, parallel to the line joining the light sources and at a distance d meters from it (see the figure). We want to locate P on, so that the intensity of illumination is minimized. We need to use the fact that the intensity of illumination for a single source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source. a) Find an expression for the intensity l(x) at the point P. b) If d = 5m, use graphs of l(x) and l'(x) to show that the intensity is minimized when x = 5m, that is, when P is at the midpoint of l. c) If d = 10m, show that the intensity (perhaps surprisingly) is not minimized at the midpoint. d) Somewhere between d = 5m and d = 10m there is a transitional value of d at which the point of minimal illumination abruptly changes. Estimate this value of d by graphical methods. Then find the exact value…arrow_forward
- White light strikes the left face of a 30°-60°-90° glass prism along a normal to the surface (so there is no refraction there). The light moves horizontally through the prism and strikes the right face at an angle of 30.00° to the normal. As the light leaves the prism it is refracted at the right face. DO ALL CALCULATIONS TO 4 SIGNIFICANT FIGURES! 20.0 30.0 90 What is the DIFFERENCE in the refracted angles for red light (nred = 1.555) and violet (nviolet = 1.604)? Find (0y - 0,), where 0y and 0, are the angles of refraction for violet and red light. degreesarrow_forwardThe speed of light in a vacuum (and to a very good approximation in air also) is 3.0 x108 m/s. Light slows down when it enters transparent materials. What is the speed of light in a material with refractive index 1.35? V= m/s Note: you can enter your answer in exponential notation using "E": 1.23 x108 is entered as 1.23E8. What index of refraction corresponds to a speed of light in matter of 1.76 x108 m/s? n =arrow_forwardA ray of light in air hits the surface of glass (n=1.5) at a 40° angle with respect to the Which of the rays shown, A or B, best represents the correct transmitted ray? ormal. Find the angle between the normal and the ray that travels into the glass. n=1.0 n=1.5 40° A Barrow_forward
- A beam of light passes from glass with refractive index 1.58 into water with a refractive index 1.33. The angle of the refracted ray in water is 58.0o . a) Draw a sketch of the situation showing the interface between the media, the normal line, the incident ray, the reflected ray, the refracted ray, and the angles of these rays relative to the normal line. b) Calculate the angle of incidence in the glass. Explainarrow_forwardA lightbulb is immersed in water. Light travels out in all directions from the bulb, but only some of the light escapes the water's surface (see figure attached which happens to be for a glass/air interface instead of a water/air interface). What happens to the fraction f of light that escapes the water's surface as the bulb is moved deeper into the water? (assume the light is not absorbed by the water itself). a. f remains the same. b. f increases. c. f decreases. d. the answer depends on the index of refraction of the water.arrow_forwarda. How long (in ns) does it take light to travel 1.0 m in a vacuum?b. What distance does light travel in water, glass, and diamond during the time that it travels 1.0 m in a vacuum?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY