College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 13CQ
The most common type at mirage is an illusion that light from faraway objects is reflected by a pool of water that is not really there. Mirages are generally observed in deserts when there is a hot layer of air near the ground. Given that the reflective index of air is lower for air at higher temperatures, explain how mirages can be formed.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A type of mirage called a pingo is often observed in Alaska. Pingos occur when the light from a small hill passes to an observer by a path that takes the light over a body of water warmer than the air. What is seen is the hill and an inverted image directly below it. Explain how these mirages are formed.
A small air bubble is 4.2 cm below the surface of a clear piece of plastic. When an opaque disk with a 3.4 cm radius is placed directly over the bubble, the bubble cannot be seen from above from any angle. What does this imply about the index of refraction of the plastic?
There is an interesting optical effect you have likely noticed while driving along a flat stretch of road on a sunny day. A small, distant dip in the road appears to be filled with water. You may even see the reflection of an oncoming car. But, as you get closer, you find no puddle of water after all;the shimmering surface vanishes, and you see nothing but empty road. It was only a mirage, the name for this phenomenon. The mirage is due to the different index of refraction of hot and cool air. The actual bending of the light rays that produces the mirage is subtle, but we can make a simple model as follows. When air is heated, its density decreases and so does its index of refraction. Consequently, a pocket of hot air in a dip in a road has a lower index of refraction than the cooler air above it. Incident light rays with large angles of incidence (that is, nearly parallel to the road, as shown) experience total internal reflection. The mirage that you see is due to thisreflection. As…
Chapter 25 Solutions
College Physics
Ch. 25 - Using the law of reflection, explain how powder...Ch. 25 - Diffusion by reflection from a rough surface is...Ch. 25 - Why is the index of refraction always greater than...Ch. 25 - Does the fact that the light flash from lightning...Ch. 25 - Will light change direction toward or away from...Ch. 25 - Explain why an object in water always appears to...Ch. 25 - Explain why a person’s legs appeal very short when...Ch. 25 - Prob. 8CQCh. 25 - Suppose light were incident from air onto a...Ch. 25 - A ring with a colorless gemstone is dropped into...
Ch. 25 - A high-quality diamond may be quite clear and...Ch. 25 - Prob. 12CQCh. 25 - The most common type at mirage is an illusion that...Ch. 25 - It can he argued that a flat piece of glass, such...Ch. 25 - You can often see a reflection when looking at a...Ch. 25 - When you focus a camera, you adjust the distance...Ch. 25 - A thin lens has two focal points, one on either...Ch. 25 - Will the focal length of a lens change when it is...Ch. 25 - What are the differences between teal and virtual...Ch. 25 - Can you see a virtual image? Can you photograph...Ch. 25 - Is it necessary to project a real image onto a...Ch. 25 - At what distance is an image always locatedat do,...Ch. 25 - Under what circumstances will an image be located...Ch. 25 - What is meant by a negative magnification? What is...Ch. 25 - Can a case 1 image be larger than the object even...Ch. 25 - Prob. 26CQCh. 25 - Devise an arrangement of mirrors allowing you to...Ch. 25 - If you wish to see your entire body in a flat...Ch. 25 - It can be argued than a flat mirror has an in?nite...Ch. 25 - Why are diverging mirrors often used for rear-view...Ch. 25 - Prob. 1PECh. 25 - Prob. 2PECh. 25 - Light shows staged with lasers use moving mirrors...Ch. 25 - Prob. 4PECh. 25 - What is the speed of light in water? In glycerine?Ch. 25 - What is the speed of light in air? In crown glass?Ch. 25 - Calculate the index of refraction for a medium in...Ch. 25 - In what substance in Table 25.1 is the speed of...Ch. 25 - There was a major collision of an asteroid with...Ch. 25 - Prob. 10PECh. 25 - Components of some computers communicate with each...Ch. 25 - Prob. 12PECh. 25 - Suppose you have an unknown clear substance...Ch. 25 - On the Moon’s surface, lunar astronauts placed a...Ch. 25 - Prob. 15PECh. 25 - Prob. 16PECh. 25 - Unreasonable Results Suppose light travels from...Ch. 25 - Construct Your Own Problem Consider sunlight...Ch. 25 - Unreasonable Results Light traveling from water to...Ch. 25 - Verify that the critical angle for light going...Ch. 25 - (a) At the end of Example 25.4, it was stated that...Ch. 25 - An optical fiber uses flint glass clad with crown...Ch. 25 - At what minimum angle will you get total internal...Ch. 25 - Suppose you are using total internal reflection to...Ch. 25 - You can determine me index of refraction of a...Ch. 25 - Prob. 26PECh. 25 - Prob. 27PECh. 25 - (a) What is me ratio of the speed of red light to...Ch. 25 - A beam of white light goes from air into water at...Ch. 25 - By how much do the critical angles for red (660...Ch. 25 - (a) A narrow beam of light containing yellow (580...Ch. 25 - A parallel beam of light containing orange (610...Ch. 25 - A ray of 610 nm light goes from air into fused...Ch. 25 - A narrow beam of light containing red (660 nm) and...Ch. 25 - Prob. 35PECh. 25 - What is the power in diopters at a camera lens...Ch. 25 - Your camera's zoom lens has an adjustable focal...Ch. 25 - What is the focal length of 1.75 D reading glasses...Ch. 25 - You note that your prescription for new eyeglasses...Ch. 25 - How far from the lens must the film in a camera...Ch. 25 - A certain slide projector has a 100 mm focal...Ch. 25 - A doctor examines a mole with a 15.0 cm focal...Ch. 25 - How far from a piece of paper must you hold your...Ch. 25 - A camera with a 50.0 mm focal length lens is being...Ch. 25 - A camera lens used for taking close-up photographs...Ch. 25 - Suppose your 50.00 mm local length camera lens is...Ch. 25 - (a) What is the focal length of a magnifying glass...Ch. 25 - What magnification will be produced by a lens of...Ch. 25 - In Example 25.7, the magnification of a book held...Ch. 25 - Suppose a 200 mm focal length telephoto lens is...Ch. 25 - A camera with a 100 mm focal length lens is used...Ch. 25 - Combine thin lens equations to show that the...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - Some telephoto cameras use a mirror rather than a...Ch. 25 - (a) Calculate the focal length of the mirror...Ch. 25 - Find the magnification of the heater element in...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - A shopper standing 3.00 m from a convex security...Ch. 25 - An object 1.50 cm high is held 3.00 cm from a...Ch. 25 - Ray tracing for a flat mirror shows that the image...Ch. 25 - Show that for a flat mirror hi= ho, knowing that...Ch. 25 - Use the law of reflection to prove that the focal...Ch. 25 - Referring to the electric room heater considered...Ch. 25 - Consider a 250-W heat lamp fixed to the ceiling in...Ch. 25 - Prob. 1TPCh. 25 - Prob. 2TPCh. 25 - Prob. 3TPCh. 25 - Prob. 4TPCh. 25 - Prob. 5TPCh. 25 - Prob. 6TPCh. 25 - Prob. 7TPCh. 25 - Prob. 8TPCh. 25 - Prob. 9TPCh. 25 - Prob. 10TPCh. 25 - Prob. 11TPCh. 25 - Prob. 12TPCh. 25 - Prob. 13TPCh. 25 - Prob. 14TPCh. 25 - Prob. 15TPCh. 25 - Prob. 16TPCh. 25 - Prob. 17TPCh. 25 - Prob. 18TPCh. 25 - Prob. 19TPCh. 25 - Prob. 20TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
In cats, tortoiseshell coat color appears in females. A tortoiseshell coat has patches of dark brown fur and pa...
Genetic Analysis: An Integrated Approach (3rd Edition)
1. ___ Mitosis 2. ___ Meiosis 3. __ Homologous chromosomes 4. __ Crossing over 5. __ Cytokinesis A. Cytoplasmic...
Microbiology with Diseases by Body System (5th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
60. You are 9.0 m from the door of your bus, behind the bus, when it pulls away with an acceleration of 1.0 m/...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
87. Fill in the blanks.
a.
b.
c.
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When you observe a mirage on a hot day, what are you actuallyseeing when you gaze at the “pool of water” in the distance?arrow_forwardThere is an interesting optical effect you have likely noticed while driving along a flat stretch of road on a sunny day. A small, distant dip in the road appears to be filled with water. You may even see the reflection of an oncoming car. But, as you get closer, you find no puddle of water after all;the shimmering surface vanishes, and you see nothing but empty road. It was only a mirage, the name for this phenomenon. The mirage is due to the different index of refraction of hot and cool air. The actual bending of the light rays that produces the mirage is subtle, but we can make a simple model as follows. When air is heated, its density decreases and so does its index of refraction. Consequently, a pocket of hot air in a dip in a road has a lower index of refraction than the cooler air above it. Incident light rays with large angles of incidence (that is, nearly parallel to the road, as shown) experience total internal reflection. The mirage that you see is due to thisreflection. As…arrow_forwardThere is an interesting optical effect you have likely noticed while driving along a flat stretch of road on a sunny day. A small, distant dip in the road appears to be filled with water. You may even see the reflection of an oncoming car. But, as you get closer, you find no puddle of water after all;the shimmering surface vanishes, and you see nothing but empty road. It was only a mirage, the name for this phenomenon. The mirage is due to the different index of refraction of hot and cool air. The actual bending of the light rays that produces the mirage is subtle, but we can make a simple model as follows. When air is heated, its density decreases and so does its index of refraction. Consequently, a pocket of hot air in a dip in a road has a lower index of refraction than the cooler air above it. Incident light rays with large angles of incidence (that is, nearly parallel to the road, as shown) experience total internal reflection. The mirage that you see is due to thisreflection. As…arrow_forward
- A thin spherical glass shell in air is filled with an unknown liquid. A parallel light beam is incident on the shell, and it is observed that the light is brought to focus on the surface of the shell directly opposite. What is the reflective index of the liquid? The correct answer is 2, but I do not understand how to get this answer.arrow_forwardBella and Asante now work a problem to determine whether they understand total internal reflection. A thin film of water sits on top of a flat piece of glass. Note that n water = 1.333 and n glass = 1.56. For total internal reflection, does Asante say the light starts in the glass or in the water? "In the water, because the water has a higher index of refraction" "In the glass, because the glass has a lower index of refraction" "In the glass, because the glass has a higher index of refraction" "In the water, because the water has a lower index of refraction" Asante is correct. Total internal reflection can occur only when light travels from a region of higher to lower index of refraction. What is the critical angle for which total internal reflection will occur?arrow_forward99. Subject :- Physicsarrow_forward
- Is Light Reflected or Refracted? When light propagates through two adjacent materials that have different optical properties, some interesting phenomena occur at the interface separating the two materials. For example, consider a ray of light that travels from air into the water of a lake. As the ray strikes the air-water interface (the surface of the lake), it is partly reflected back into the air and partly refracted or transmitted into the water. This explains why on the surface of a lake sometimes you see the reflection of the surrounding landscape and other times the underwater vegetation. These effects on light propagation occur because light travels at different speeds depending on the medium. The index of refraction of a material, denoted by n. gives an indication of the speed of light in the material. It is defined as the ratio of the speed of light e in vacuum to the speed in the material, or n = { Figure incident ray interface. €₂ reflected ray refracted ▾ When light…arrow_forwardi need help with thiss thank youuu!!!arrow_forwardIf the index of refraction of material 1 is n1 = 1.27 and of material 2 is n2 = 1.41, then a total internal reflection at the interface between these two materials Group of answer choices may occur when light goes from material 2 to material 1 can never occur at this interface. may occur when light goes from material 1 to material 2 can occur whenever light goes between these two materials, regardless of the direction of the light. occurs whenever light goes from material 1 to material 2 occurs whenever light goes from material 2 to material 1arrow_forward
- Questions 20 through 22 are concerned with the situation sketched as shown, in which a beam of light in the air encounters a transparent block with index of refraction n = 1.53. Some of the light is reflected and some is refracted. Is there an angle of incidence between 0° and 90° such that all of the light will be reflected?A. Yes, at an angle greater than 50°B. Yes, at an angle less than 50°C. Noarrow_forwardWhen light propagates through two adjacent materials that have different optical properties, some interesting phenomena occur at the interface separating the two materials. For example, consider a ray of light that travels from air into the water of a lake. As the ray strikes the air-water interface (the surface of the lake), it is partly reflected back into the air and partly refracted or transmitted into the water. This explains why on the surface of a lake sometimes you see the reflection of the surrounding landscape and other times the underwater vegetation. These effects on light propagation occur because light travels at different speeds depending on the medium. The index of refraction of a material, denoted by n. gives an indication of the speed of light in the material. It is defined as the ratio of the speed of light e in vacuum to the speed in the material, or Figure incident ray interface normal n= 0₁ 등.. Ga reflected ray refracted ray Is light always both reflected and…arrow_forwardQ2: Light in a material with an index of refraction of 1.57 is refracted into air, at an angle of refraction of 56". (a) What is the angle of incidence? (b) What is the speed of light in material? Q3 :A beam of light passes through a block of glass 10.0 cm thick, then through water for a distance of 30.5 cm, and finally through another block of glass 5.0 cm thick. If the refractive index of both pieces of glass is 1.5250 and of water is 1.3330, find the total optical path. Q4 : Write and draw how the total internal reflection happens and the conditions. 6 1 a 6:06arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY