College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 7PE
Calculate the index of refraction for a medium in which the
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A light ray in air hits the surface of a particular liquid at an angle of incidence of 74.7°. The angle of refraction in this liquid is 50.0°. Calculate the speed of light (in 108 m/s) in this liquid.
Enter the numerical part of your answer to three significant figures.
The speed of light in a vacuum = c = 3.00 × 108 m/s.
Use the exact values you enter to make later calculations.
A ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.42) at an angle of 0 = 34.0° with respect to the normal (see figure below).
2.00 cm
(a) Find the angle of refraction at the top surface and the angle of incidence at the bottom surface.
(b) Find the refracted angle at the bottom surface.
(c) Find the lateral distance d by which the light beam is shifted.
cm
(d) Calculate the speed of light in the glass.
m/s
(e) Calculate the time required for the light to pass through the glass block.
(f) Is the travel time through the block affected by the angle of incidence?
O No
Yes, a slightly larger angle will decrease the travel time.
Yes, a slightly larger angle will increase the travel time.
7:47
a).
You make of plot of sin(0¡nside) versus
sin(0outside). What is the index of refraction for
the prism if the slope of the best fit line is 0.647
± 0.004?
b)
. If your lab partner calculates the index
of refraction of a medium to be 1.3 ± 0.6,
determine the speed of light as it travels
through the medium. Assume the speed of light
in vacuum is 3x10® m/s.
c)
You now orient the prism with respect
to the light as shown below. Which color will get
refracted the most? Least? Explain.
(Top View)
Chapter 25 Solutions
College Physics
Ch. 25 - Using the law of reflection, explain how powder...Ch. 25 - Diffusion by reflection from a rough surface is...Ch. 25 - Why is the index of refraction always greater than...Ch. 25 - Does the fact that the light flash from lightning...Ch. 25 - Will light change direction toward or away from...Ch. 25 - Explain why an object in water always appears to...Ch. 25 - Explain why a person’s legs appeal very short when...Ch. 25 - Prob. 8CQCh. 25 - Suppose light were incident from air onto a...Ch. 25 - A ring with a colorless gemstone is dropped into...
Ch. 25 - A high-quality diamond may be quite clear and...Ch. 25 - Prob. 12CQCh. 25 - The most common type at mirage is an illusion that...Ch. 25 - It can he argued that a flat piece of glass, such...Ch. 25 - You can often see a reflection when looking at a...Ch. 25 - When you focus a camera, you adjust the distance...Ch. 25 - A thin lens has two focal points, one on either...Ch. 25 - Will the focal length of a lens change when it is...Ch. 25 - What are the differences between teal and virtual...Ch. 25 - Can you see a virtual image? Can you photograph...Ch. 25 - Is it necessary to project a real image onto a...Ch. 25 - At what distance is an image always locatedat do,...Ch. 25 - Under what circumstances will an image be located...Ch. 25 - What is meant by a negative magnification? What is...Ch. 25 - Can a case 1 image be larger than the object even...Ch. 25 - Prob. 26CQCh. 25 - Devise an arrangement of mirrors allowing you to...Ch. 25 - If you wish to see your entire body in a flat...Ch. 25 - It can be argued than a flat mirror has an in?nite...Ch. 25 - Why are diverging mirrors often used for rear-view...Ch. 25 - Prob. 1PECh. 25 - Prob. 2PECh. 25 - Light shows staged with lasers use moving mirrors...Ch. 25 - Prob. 4PECh. 25 - What is the speed of light in water? In glycerine?Ch. 25 - What is the speed of light in air? In crown glass?Ch. 25 - Calculate the index of refraction for a medium in...Ch. 25 - In what substance in Table 25.1 is the speed of...Ch. 25 - There was a major collision of an asteroid with...Ch. 25 - Prob. 10PECh. 25 - Components of some computers communicate with each...Ch. 25 - Prob. 12PECh. 25 - Suppose you have an unknown clear substance...Ch. 25 - On the Moon’s surface, lunar astronauts placed a...Ch. 25 - Prob. 15PECh. 25 - Prob. 16PECh. 25 - Unreasonable Results Suppose light travels from...Ch. 25 - Construct Your Own Problem Consider sunlight...Ch. 25 - Unreasonable Results Light traveling from water to...Ch. 25 - Verify that the critical angle for light going...Ch. 25 - (a) At the end of Example 25.4, it was stated that...Ch. 25 - An optical fiber uses flint glass clad with crown...Ch. 25 - At what minimum angle will you get total internal...Ch. 25 - Suppose you are using total internal reflection to...Ch. 25 - You can determine me index of refraction of a...Ch. 25 - Prob. 26PECh. 25 - Prob. 27PECh. 25 - (a) What is me ratio of the speed of red light to...Ch. 25 - A beam of white light goes from air into water at...Ch. 25 - By how much do the critical angles for red (660...Ch. 25 - (a) A narrow beam of light containing yellow (580...Ch. 25 - A parallel beam of light containing orange (610...Ch. 25 - A ray of 610 nm light goes from air into fused...Ch. 25 - A narrow beam of light containing red (660 nm) and...Ch. 25 - Prob. 35PECh. 25 - What is the power in diopters at a camera lens...Ch. 25 - Your camera's zoom lens has an adjustable focal...Ch. 25 - What is the focal length of 1.75 D reading glasses...Ch. 25 - You note that your prescription for new eyeglasses...Ch. 25 - How far from the lens must the film in a camera...Ch. 25 - A certain slide projector has a 100 mm focal...Ch. 25 - A doctor examines a mole with a 15.0 cm focal...Ch. 25 - How far from a piece of paper must you hold your...Ch. 25 - A camera with a 50.0 mm focal length lens is being...Ch. 25 - A camera lens used for taking close-up photographs...Ch. 25 - Suppose your 50.00 mm local length camera lens is...Ch. 25 - (a) What is the focal length of a magnifying glass...Ch. 25 - What magnification will be produced by a lens of...Ch. 25 - In Example 25.7, the magnification of a book held...Ch. 25 - Suppose a 200 mm focal length telephoto lens is...Ch. 25 - A camera with a 100 mm focal length lens is used...Ch. 25 - Combine thin lens equations to show that the...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - Some telephoto cameras use a mirror rather than a...Ch. 25 - (a) Calculate the focal length of the mirror...Ch. 25 - Find the magnification of the heater element in...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - A shopper standing 3.00 m from a convex security...Ch. 25 - An object 1.50 cm high is held 3.00 cm from a...Ch. 25 - Ray tracing for a flat mirror shows that the image...Ch. 25 - Show that for a flat mirror hi= ho, knowing that...Ch. 25 - Use the law of reflection to prove that the focal...Ch. 25 - Referring to the electric room heater considered...Ch. 25 - Consider a 250-W heat lamp fixed to the ceiling in...Ch. 25 - Prob. 1TPCh. 25 - Prob. 2TPCh. 25 - Prob. 3TPCh. 25 - Prob. 4TPCh. 25 - Prob. 5TPCh. 25 - Prob. 6TPCh. 25 - Prob. 7TPCh. 25 - Prob. 8TPCh. 25 - Prob. 9TPCh. 25 - Prob. 10TPCh. 25 - Prob. 11TPCh. 25 - Prob. 12TPCh. 25 - Prob. 13TPCh. 25 - Prob. 14TPCh. 25 - Prob. 15TPCh. 25 - Prob. 16TPCh. 25 - Prob. 17TPCh. 25 - Prob. 18TPCh. 25 - Prob. 19TPCh. 25 - Prob. 20TP
Additional Science Textbook Solutions
Find more solutions based on key concepts
True or false? Some trails are considered vestigial because they existed long ago.
Biological Science (6th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
1. A cyclist goes around a level, circular track at constant speed. Do you agree or disagree with the following...
College Physics: A Strategic Approach (3rd Edition)
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
15. A good scientific hypothesis is based on existing evidence and leads to testable predictions. What hypothes...
Campbell Biology: Concepts & Connections (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardA ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.50) at ail angle of 30.0 with respect to the normal (Fig. P22.18). (a) Find the angle of refraction at the lop surface. (b) Find the angle of incidence at the bottom surface and the refracted angle. (c) Find the lateral distance d by which the light beam is shifted. (d) Calculate the speed of light in the glass and (e) the time required for the light to pass through the glass block. (f) Is the travel time through the block affected by the angle of incidence? Explain.arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forward
- The light beam in Figure P25.53 strikes surface 2 at the critical angle. Determine the angle of incidence θ1. Figure P25.53arrow_forwardThe speed of light c in a vacuum is 2.997 × 10% m/s. Given that the index of refraction in fresh water is 1.333, what is the speed of light Vfresh water in fresh water? Ufresh water m/s Given that the index of refraction in diamond is 2.419, what is the speed of light vdiamond in diamond? Udiamond m/sarrow_forwardUse the exact values you enter to make later calculations. A ray of light strikes a flat, 2.00-cm-thick block of glass (n 1.34) at an angle of 0 = 37.6° with respect to the normal (see figure below). 2.00 cm (a) Find the angle of refraction at the top surface and the angle of incidence at the bottom surface. 27.06 O (b) Find the refracted angle at the bottom surface. 37.56 (c) Find the lateral distance d by which the light beam is shifted. 0.649 x cm (d) Calculate the speed of light in the glass. m/s (e) Calculate the time required for the light to pass through the glass block. S (f) Is the travel time through the block affected by the angle of incidence? Yes, a slightly larger angle will decrease the travel time. No Yes, a slightly larger angle will increase the travel time.arrow_forward
- A light ray in a particular medium hits the surface with air (n₁ = nair = 1.00) at an angle of incidence of 18.4°. The angle of refraction in air is 41.9°. Calculate the refractive index n₂ for this medium. n₁ n₂ 0₁ Enter the numerical part of your answer to two decimal figures. The speed of light in a vacuum = c = 3.00 × 108 m/s.arrow_forwardThe thickness of a flint glass plate is 9 cm thick. The index of refraction is 1.45. A ray of incident light strikes the upper surface at angle = 49 degrees, with respect to the normal direction. Some of the light passes through the glass and exits through the lower surface. What is the lateral displacement of the ray where it emerges from the lower surface? (in cm) OA: 2.609 OB: 3.784 OC: 5.486 OD: 7.955 OE: 11.535 OF: 16.725 |OG: 24.251 OH: 35.164arrow_forwardThe speed of light c in a vacuum is 2.997 x 10% m/s. Given that the index of refraction in fresh water is 1.333, what is the speed of light vfresh water in fresh water? Ufresh water m/s Given that the index of refraction in zircon is 1.923, what is the speed of light vzircon in zircon? Uzircon = m/sarrow_forward
- A light ray propagates in Material 1 with index of refraction n¡ = 1.15, strikes an interface, then passes into Material 2 with index of refraction n2 = 1.35. The angle of incidence at the interface is 0j = 14.7°. Determine the angle of refraction 02. Material 1 Material 2 02 =arrow_forwardConsider a light ray that enters and exits a prism as shown below. Suppose the material of the prism is unknown but the surrounding material has index of refraction n, = 1.3. Find the index of refraction for the material of the prism. n2 n1 22° 38° 9. n, = А. 1.479 D. 1.586 В. 1.635 Е. 1.333 С. 1.389 F. 1.527arrow_forwardA beam of light refracts as it travels from air into water as seen below. If the angle of incidence is 30° and the index for water is 1.33, what is the angle of refraction? (DOK 1) А. 15.4° В. 19.2° С. 22.1° D. 32.2°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY