College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 10PE
To determine
The angle, the ray makes from the face of the instructor with the perpendicular to the water at the point where the ray enters.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
H
2.0 m
d
A scuba diver training in a pool looks at his instructor as shown in the figure. The angle
between the ray in the water and the perpendicular to the water is : 25°.
(a) What angle does the ray from the instructor's face make with the perpendicular to
the water at the point where the ray enters?
Angle,
34.190
(b) Find the height, H, of the instructor's head above the water, noting that you will first
have to calculate the angle of incidence. Note the scuba diver perceives the instructor as
though the incident ray never refracted.
Height,
2.94
m
(c) Find the apparent depth, x, of the diver's head below water as seen by the instructor.
In the figure, d=2.00 m
Note the instructor perceives the diver as though the incident ray never refracted.
Apparent depth, a: 1.50
No, that's only partially correct
m
A piece of glass (n=1.50) is submerged under water (n=1.33). A ray of light starts in the glass and hitsthe surface between the glass and water at an angle 23° from the normal to the surface (while still inthe glass). What is the angle between the light path and the normal when the ray enters the water?
A beam of light passes from glass with refractive index 1.58 into water with a refractive index 1.33. The angle of the refracted ray in water is 58.0o .
a) Draw a sketch of the situation showing the interface between the media, the normal line, the incident ray, the reflected ray, the refracted ray, and the angles of these rays relative to the normal line.
b) Calculate the angle of incidence in the glass.
Explain
Chapter 25 Solutions
College Physics
Ch. 25 - Using the law of reflection, explain how powder...Ch. 25 - Diffusion by reflection from a rough surface is...Ch. 25 - Why is the index of refraction always greater than...Ch. 25 - Does the fact that the light flash from lightning...Ch. 25 - Will light change direction toward or away from...Ch. 25 - Explain why an object in water always appears to...Ch. 25 - Explain why a person’s legs appeal very short when...Ch. 25 - Prob. 8CQCh. 25 - Suppose light were incident from air onto a...Ch. 25 - A ring with a colorless gemstone is dropped into...
Ch. 25 - A high-quality diamond may be quite clear and...Ch. 25 - Prob. 12CQCh. 25 - The most common type at mirage is an illusion that...Ch. 25 - It can he argued that a flat piece of glass, such...Ch. 25 - You can often see a reflection when looking at a...Ch. 25 - When you focus a camera, you adjust the distance...Ch. 25 - A thin lens has two focal points, one on either...Ch. 25 - Will the focal length of a lens change when it is...Ch. 25 - What are the differences between teal and virtual...Ch. 25 - Can you see a virtual image? Can you photograph...Ch. 25 - Is it necessary to project a real image onto a...Ch. 25 - At what distance is an image always locatedat do,...Ch. 25 - Under what circumstances will an image be located...Ch. 25 - What is meant by a negative magnification? What is...Ch. 25 - Can a case 1 image be larger than the object even...Ch. 25 - Prob. 26CQCh. 25 - Devise an arrangement of mirrors allowing you to...Ch. 25 - If you wish to see your entire body in a flat...Ch. 25 - It can be argued than a flat mirror has an in?nite...Ch. 25 - Why are diverging mirrors often used for rear-view...Ch. 25 - Prob. 1PECh. 25 - Prob. 2PECh. 25 - Light shows staged with lasers use moving mirrors...Ch. 25 - Prob. 4PECh. 25 - What is the speed of light in water? In glycerine?Ch. 25 - What is the speed of light in air? In crown glass?Ch. 25 - Calculate the index of refraction for a medium in...Ch. 25 - In what substance in Table 25.1 is the speed of...Ch. 25 - There was a major collision of an asteroid with...Ch. 25 - Prob. 10PECh. 25 - Components of some computers communicate with each...Ch. 25 - Prob. 12PECh. 25 - Suppose you have an unknown clear substance...Ch. 25 - On the Moon’s surface, lunar astronauts placed a...Ch. 25 - Prob. 15PECh. 25 - Prob. 16PECh. 25 - Unreasonable Results Suppose light travels from...Ch. 25 - Construct Your Own Problem Consider sunlight...Ch. 25 - Unreasonable Results Light traveling from water to...Ch. 25 - Verify that the critical angle for light going...Ch. 25 - (a) At the end of Example 25.4, it was stated that...Ch. 25 - An optical fiber uses flint glass clad with crown...Ch. 25 - At what minimum angle will you get total internal...Ch. 25 - Suppose you are using total internal reflection to...Ch. 25 - You can determine me index of refraction of a...Ch. 25 - Prob. 26PECh. 25 - Prob. 27PECh. 25 - (a) What is me ratio of the speed of red light to...Ch. 25 - A beam of white light goes from air into water at...Ch. 25 - By how much do the critical angles for red (660...Ch. 25 - (a) A narrow beam of light containing yellow (580...Ch. 25 - A parallel beam of light containing orange (610...Ch. 25 - A ray of 610 nm light goes from air into fused...Ch. 25 - A narrow beam of light containing red (660 nm) and...Ch. 25 - Prob. 35PECh. 25 - What is the power in diopters at a camera lens...Ch. 25 - Your camera's zoom lens has an adjustable focal...Ch. 25 - What is the focal length of 1.75 D reading glasses...Ch. 25 - You note that your prescription for new eyeglasses...Ch. 25 - How far from the lens must the film in a camera...Ch. 25 - A certain slide projector has a 100 mm focal...Ch. 25 - A doctor examines a mole with a 15.0 cm focal...Ch. 25 - How far from a piece of paper must you hold your...Ch. 25 - A camera with a 50.0 mm focal length lens is being...Ch. 25 - A camera lens used for taking close-up photographs...Ch. 25 - Suppose your 50.00 mm local length camera lens is...Ch. 25 - (a) What is the focal length of a magnifying glass...Ch. 25 - What magnification will be produced by a lens of...Ch. 25 - In Example 25.7, the magnification of a book held...Ch. 25 - Suppose a 200 mm focal length telephoto lens is...Ch. 25 - A camera with a 100 mm focal length lens is used...Ch. 25 - Combine thin lens equations to show that the...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - Some telephoto cameras use a mirror rather than a...Ch. 25 - (a) Calculate the focal length of the mirror...Ch. 25 - Find the magnification of the heater element in...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - A shopper standing 3.00 m from a convex security...Ch. 25 - An object 1.50 cm high is held 3.00 cm from a...Ch. 25 - Ray tracing for a flat mirror shows that the image...Ch. 25 - Show that for a flat mirror hi= ho, knowing that...Ch. 25 - Use the law of reflection to prove that the focal...Ch. 25 - Referring to the electric room heater considered...Ch. 25 - Consider a 250-W heat lamp fixed to the ceiling in...Ch. 25 - Prob. 1TPCh. 25 - Prob. 2TPCh. 25 - Prob. 3TPCh. 25 - Prob. 4TPCh. 25 - Prob. 5TPCh. 25 - Prob. 6TPCh. 25 - Prob. 7TPCh. 25 - Prob. 8TPCh. 25 - Prob. 9TPCh. 25 - Prob. 10TPCh. 25 - Prob. 11TPCh. 25 - Prob. 12TPCh. 25 - Prob. 13TPCh. 25 - Prob. 14TPCh. 25 - Prob. 15TPCh. 25 - Prob. 16TPCh. 25 - Prob. 17TPCh. 25 - Prob. 18TPCh. 25 - Prob. 19TPCh. 25 - Prob. 20TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A man shines a flashlight from a boat into the water, illuminating a rock as in Figure P22.21. What is the angle of incidence 1?arrow_forwardThe light beam in Figure P25.53 strikes surface 2 at the critical angle. Determine the angle of incidence θ1. Figure P25.53arrow_forwardIn the figure shown, a light ray travelling through air (n=1.0) strikes the surface of an unknown material. The soeed of light in this unknown material is only 1.2E8 m)s, and the angke marked (alpha) in the figure is 30 degrees. A) What is the index of refraction of the unknown material? B) What is the angle marked (Beta) in the figure? 2) Draw a history graph for the position x= -2m for the same wave pulse shown in the diagram figure above. Show some mathematical proofsarrow_forward
- A ray of light traveling water is incident on an interface with a flat piece of glass. The wavelength of the light in the water (nwater = 1.333) is 726 nm and its wavelength in the glass is 544 nm. If the ray in water makes an angle of 56° with respect to the normal to the interface, what angle does the refracted ray in the glass make with respect to the normal? A. 25.4° В. 38.4° С. 43.8° D. 54.2°arrow_forwardA ray of light in the air hits a block of transparent material at an incident angle 0f 62°. The angle of refraction is 44°. a) Sketch the situation, labelling the incident ray, the refracted ray, the reflected ray, and the normal. b) Determine the index of refraction of the transparent block and the speed of light in the block.arrow_forwardH 2.0m A scuba diver training in a pool looks at his instructor as shown in the figure. The angle between the ray in the water and the perpendicular to the water is 0: 25°. (a) What angle does the ray from the instructor's face make with the perpendicular to the water at the point where the ray enters? Angle, : 34.190 (b) Find the height, H, of the instructor's head above the water, noting that you will first have to calculate the angle of incidence. Note the scuba diver perceives the instructor as though the incident ray never refracted.arrow_forward
- A ray of light travels from a liquid-to-flexi glass interface at an angle of 45.0°. Indices of refraction for the flexi glass and liquid are, respectively, 1.3 and 1.5. What is the angle of refraction for the ray moving through the liquid?arrow_forwardEdward and Calil do some experiments to determine the speed of light in a special transparent material. They determine the speed of light to be 0.63c. Edward shines a light thru the material. Determine the critical angle in degrees for the light ray if there is a chamber of air above the material. Please give your answer as a whole number. (c is the speed of light in vacuum)arrow_forwardThe speed of light c in a vacuum is 2.997 × 10% m/s. Given that the index of refraction in fresh water is 1.333, what is the speed of light Vfresh water in fresh water? Ufresh water m/s Given that the index of refraction in diamond is 2.419, what is the speed of light vdiamond in diamond? Udiamond m/sarrow_forward
- . Light strikes an air water boundary with an angle of incidence of 30°. Calculate the refracted light ray in water. 22.082° 12.082° a. 32.082° b. 2.082° A layer of oil (n=1.45) floats on water (n=1.33). A ray of light shines onto the oil with an incidence angle of 40°. Find the angle the ray makes in the water. a. b. 28.901° 38.901⁰ a. b. C. d. 34.5321° 24.4075° C. d. 40% C. d. 18.901⁰ 8.901⁰ The refractive index of diamond is 2.42. What is the critical angle for light passing from diamond to air? Air Oil Water 14.5225° 44.7345°arrow_forwardA point source of light is below the surface of H20. The index of refraction of H20 is 1.33. A light ray that emrges from the source of light strikes the H2O - air interface at an angle of 37 to the normal. What statement best describe what the light ray does after striking interface? a/ Incident ray will inter fully destructively with the refrected ray, producing total internal refelction. b/ Incident ray will bounce back on the intrface and travel along the same path but in the opposite direction c/ The path of light will be reflected back into the H2O, and part will be transmitted into the air d/ All the light will be reflected back into the H2O e/ The incident ray will interfere fully destructively with the transmitted ray, producing total internal reflection. f/ The incident ray will interfere fully destructively with both reflected and transmitted rays producings total internal refelction g/ all light transmitted to airarrow_forwardThe critical angle for total internal reflection at a liquid-air interface is 42.5◦.at. If a ray of light traveling in the liquid has an angle of incidence at the interface of 35◦,what angle does the ray refracted in air make with the normal?b. If a ray of light traveling through air has an angle of incidence at the interfaces of 35◦, what angle does the ray refracted in the liquid make with the normal?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY