College Physics
OER 2016 Edition
ISBN: 9781947172173
Author: OpenStax
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 18TP
To determine
The type of the mirror and the experimental method for identifying the shape of the mirror.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A student is usinga mirror in an experiment. She places a 5 cm tall object 16 cm in front of the mirror. A real
image, 7 cm tall, is produced. She then moves the object to a different position in front of the mirror and no
image is produced.
What type of mirror is the student using?
Give one piece of information (what was the "hint") that helped you to identify what type of mirrorwas being
used.
What type of mirror is used as a car's sideview mirror?
What is the advantage of using this type of mirror for this purpose?
A student is using a convex mirror. The mirror has a focal length of -5 cm. An object is placed 3 cm from the
mirror and has a height of 4 cm.
Calculate the image distance.
Calculate the image height.
A man is standing in front of a plane mirror. What is the minimum mirror height to see his full image? Explain your answer.
Two students in a physics laboratory each have a concave mirror with the same radius of curvature, 40 cm. Each student places an object in front of a mirror. The image in both mirrors is three times the size of the object. However, when the students compare notes, they find that the object distances are not the same. What is the distance of the closer object?
Chapter 25 Solutions
College Physics
Ch. 25 - Using the law of reflection, explain how powder...Ch. 25 - Diffusion by reflection from a rough surface is...Ch. 25 - Why is the index of refraction always greater than...Ch. 25 - Does the fact that the light flash from lightning...Ch. 25 - Will light change direction toward or away from...Ch. 25 - Explain why an object in water always appears to...Ch. 25 - Explain why a person’s legs appeal very short when...Ch. 25 - Prob. 8CQCh. 25 - Suppose light were incident from air onto a...Ch. 25 - A ring with a colorless gemstone is dropped into...
Ch. 25 - A high-quality diamond may be quite clear and...Ch. 25 - Prob. 12CQCh. 25 - The most common type at mirage is an illusion that...Ch. 25 - It can he argued that a flat piece of glass, such...Ch. 25 - You can often see a reflection when looking at a...Ch. 25 - When you focus a camera, you adjust the distance...Ch. 25 - A thin lens has two focal points, one on either...Ch. 25 - Will the focal length of a lens change when it is...Ch. 25 - What are the differences between teal and virtual...Ch. 25 - Can you see a virtual image? Can you photograph...Ch. 25 - Is it necessary to project a real image onto a...Ch. 25 - At what distance is an image always locatedat do,...Ch. 25 - Under what circumstances will an image be located...Ch. 25 - What is meant by a negative magnification? What is...Ch. 25 - Can a case 1 image be larger than the object even...Ch. 25 - Prob. 26CQCh. 25 - Devise an arrangement of mirrors allowing you to...Ch. 25 - If you wish to see your entire body in a flat...Ch. 25 - It can be argued than a flat mirror has an in?nite...Ch. 25 - Why are diverging mirrors often used for rear-view...Ch. 25 - Prob. 1PECh. 25 - Prob. 2PECh. 25 - Light shows staged with lasers use moving mirrors...Ch. 25 - Prob. 4PECh. 25 - What is the speed of light in water? In glycerine?Ch. 25 - What is the speed of light in air? In crown glass?Ch. 25 - Calculate the index of refraction for a medium in...Ch. 25 - In what substance in Table 25.1 is the speed of...Ch. 25 - There was a major collision of an asteroid with...Ch. 25 - Prob. 10PECh. 25 - Components of some computers communicate with each...Ch. 25 - Prob. 12PECh. 25 - Suppose you have an unknown clear substance...Ch. 25 - On the Moon’s surface, lunar astronauts placed a...Ch. 25 - Prob. 15PECh. 25 - Prob. 16PECh. 25 - Unreasonable Results Suppose light travels from...Ch. 25 - Construct Your Own Problem Consider sunlight...Ch. 25 - Unreasonable Results Light traveling from water to...Ch. 25 - Verify that the critical angle for light going...Ch. 25 - (a) At the end of Example 25.4, it was stated that...Ch. 25 - An optical fiber uses flint glass clad with crown...Ch. 25 - At what minimum angle will you get total internal...Ch. 25 - Suppose you are using total internal reflection to...Ch. 25 - You can determine me index of refraction of a...Ch. 25 - Prob. 26PECh. 25 - Prob. 27PECh. 25 - (a) What is me ratio of the speed of red light to...Ch. 25 - A beam of white light goes from air into water at...Ch. 25 - By how much do the critical angles for red (660...Ch. 25 - (a) A narrow beam of light containing yellow (580...Ch. 25 - A parallel beam of light containing orange (610...Ch. 25 - A ray of 610 nm light goes from air into fused...Ch. 25 - A narrow beam of light containing red (660 nm) and...Ch. 25 - Prob. 35PECh. 25 - What is the power in diopters at a camera lens...Ch. 25 - Your camera's zoom lens has an adjustable focal...Ch. 25 - What is the focal length of 1.75 D reading glasses...Ch. 25 - You note that your prescription for new eyeglasses...Ch. 25 - How far from the lens must the film in a camera...Ch. 25 - A certain slide projector has a 100 mm focal...Ch. 25 - A doctor examines a mole with a 15.0 cm focal...Ch. 25 - How far from a piece of paper must you hold your...Ch. 25 - A camera with a 50.0 mm focal length lens is being...Ch. 25 - A camera lens used for taking close-up photographs...Ch. 25 - Suppose your 50.00 mm local length camera lens is...Ch. 25 - (a) What is the focal length of a magnifying glass...Ch. 25 - What magnification will be produced by a lens of...Ch. 25 - In Example 25.7, the magnification of a book held...Ch. 25 - Suppose a 200 mm focal length telephoto lens is...Ch. 25 - A camera with a 100 mm focal length lens is used...Ch. 25 - Combine thin lens equations to show that the...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - Some telephoto cameras use a mirror rather than a...Ch. 25 - (a) Calculate the focal length of the mirror...Ch. 25 - Find the magnification of the heater element in...Ch. 25 - What is the focal length of a makeup mirror that...Ch. 25 - A shopper standing 3.00 m from a convex security...Ch. 25 - An object 1.50 cm high is held 3.00 cm from a...Ch. 25 - Ray tracing for a flat mirror shows that the image...Ch. 25 - Show that for a flat mirror hi= ho, knowing that...Ch. 25 - Use the law of reflection to prove that the focal...Ch. 25 - Referring to the electric room heater considered...Ch. 25 - Consider a 250-W heat lamp fixed to the ceiling in...Ch. 25 - Prob. 1TPCh. 25 - Prob. 2TPCh. 25 - Prob. 3TPCh. 25 - Prob. 4TPCh. 25 - Prob. 5TPCh. 25 - Prob. 6TPCh. 25 - Prob. 7TPCh. 25 - Prob. 8TPCh. 25 - Prob. 9TPCh. 25 - Prob. 10TPCh. 25 - Prob. 11TPCh. 25 - Prob. 12TPCh. 25 - Prob. 13TPCh. 25 - Prob. 14TPCh. 25 - Prob. 15TPCh. 25 - Prob. 16TPCh. 25 - Prob. 17TPCh. 25 - Prob. 18TPCh. 25 - Prob. 19TPCh. 25 - Prob. 20TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- If Joshs face is 30.0 cm in front of a concave shaving mirror creating an upright image 1.50 times as large as the object, what is the mirrors focal length? (a) 12.0 cm (b) 20.0 cm (c) 70.0 cm (d) 90.0 cm (e) none of those answersarrow_forwardCurved glassair interfaces like those observed in an empty shot glass make it possible for total internal reflection to occur at the shot glasss internal surface. Consider a glass cylinder (n = 1.54) with an outer radius of 2.50 cm and an inner radius of 2.00 cm as shown in Figure P38.105. Find the minimum angle i such that there is total internal reflection at the inner surface of the shot glass. FIGURE P38.105 Problems 105 and 106.arrow_forwardA person walks into a room that has two flat mirrors on opposite walls. File mirrors produce multiple images of the person. Consider only the images formed in the mirror on the left. When the person is 2.00 m from the mirror on the left wall and 4.00 m from the mirror on the right wall, find the distance from the person to the first three images seen in the mirror on the left wall.arrow_forward
- The radius of curvature of the left-hand face of a flint glass biconvex lens (n = 1.60) has a magnitude of 8.00 cm, and the radius of curvature of the right-hand face has a magnitude of 11.0 cm. The incident surface of a biconvex lens is convex regardless of which side is the incident side. What is the focal length of the lens if light is incident on the lens from the left?arrow_forwardConsider the lensmirror arrangement shown in Figure P35.55. There are two final image positions to the left of the lens of focal length fL. One image position is due to light traveling from the object to the left and passing through the lens. The other image position is due to light traveling to the right from the object, reflecting from the mirror of focal length fM and then passing through the lens. For a given object position p between the lens and the mirror and measured with respect to the lens, there are two separation distances d between the lens and mirror that will cause the two images described above to be at the same location. Find both positions.arrow_forwardA 1.80-m-tall person stands 9.00 m in front of a large, concave spherical mirror having a radius of curvature of 3.00 m. Determine (a) the mirrors focal length, (b) the image distance, and (c) the magnification. (d) Is the image real or virtual? (e) Is the image upright or inverted?arrow_forward
- An object of height 3 cm is placed at 25 cm in front of a converging lens of focal length 20 cm. Behind the lens there is a concave mirror of focal length 20 cm. The distance between the lens and the mirror is 5 cm. Find the location, orientation and size of the final image.arrow_forwardA floating strawberry illusion is achieved with two parabolic mirrors, each having a focal length 7.50 cm, facing each other as shown in Figure P33.58. If a strawberry is placed on the lower mirror, an image of the strawberry is formed at the small opening at the center of the top mirror, 7.50 cm above the lowest point of the bottom mirror. The position of the eye in Figure P35.58a corresponds to the view of the apparatus in Figure P35.58b. Consider the light path marked A. Notice that this light path is blocked by the upper mirror so that the strawberry itself is not directly observable. The light path marked B corresponds to the eye viewing the image of the strawberry that is formed at the opening at the top of the apparatus. (a) Show that the final image is formed at that location and describe its characteristics. (b) A very startling effect is to shine a flashlight beam on this image. Even al a glancing angle, the incoming light beam is seemingly reflected from the image! Explain. Figure P35.58arrow_forwardUse a ruler and a protractor to draw rays to find images in the following cases. (a) A point object located on the axis of a concave minor located at a point within the focal length from the vertex. (b) A point object located on the axis of a concave mirror located at a point farther than the focal length from the vertex. (c) A point object located on the axis of a convex mirror located at a point within the focal length from the vertex. (d) A point object located on the axis of a convex mirror located at a point farther than the focal length from the vertex. (e) Repeat (a)—(d) for a point object off the axis.arrow_forward
- An observer to the right of the mirror-lens combination shown in Figure P36.89 (not to scale) sees two real images that are the same size and in the same location. One image is upright, and the other is inverted. Both images are 1.50 times larger than the object. The lens has a focal length of 10.0 cm. The lens and mirror are separated by 40.0 cm. Determine the focal length of the mirror.arrow_forwardThe object in Figure P23.52 is mid-way between the lens and the mirror, which are separated by a distance d = 25.0 cm. The magnitude of the mirrors radius of curvature is 20.0 cm, and the lens has a focal length of 16.7 cm. (a) Considering only the light that leaves the object and travels first toward the mirror, locate the final image formed by this system. (b) Is the image real or virtual? (c) Is it upright or inverted? (d) What is the overall magnification of the image? Figure P23.52arrow_forwardA convex mirror with a radius of curvature of 25.0 cm is used to form an image of an arrow that is 10.0 cm away from the mirror. If the arrow is 2.00 cm tall and inverted (pointing below the optical axis), what is the height of the arrows image?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY