EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 46SDP
Make a list of components of machine tools that could be made of ceramics, and explain why ceramics would be suitable.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In machining a mild steel work piece with carbide tool, the life of the tool was
found to be 1 hour and 40 minutes, at a spindle speed of 30 m/min. Calculate the
tool life if it has to be operated at a speed of 40% higher than the initial cutting
speed. Also calculate the cutting speed if the tool is required to have a life of
2 hours and 45 minutes. Assume Taylor's exponent valuen is 0.28.
Identify the various machine tools used in industry and explain the importance of each machine tool.
In a cutting test with 0.3 mm flank wear as tool
failure criterion, a tool life of 10 min was obtained
at a cutting velocity of 20 m/min. Taking tool life
exponent as 0.25, the tool life in minutes at 40
m/min of cutting velocity will be
Chapter 25 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 25 - Describe the distinctive features of machining...Ch. 25 - Explain how the tooling system in a machining...Ch. 25 - Explain the trends in materials used for...Ch. 25 - Is there any difference between chatter and...Ch. 25 - What are the differences between forced and...Ch. 25 - Explain the importance of foundations in...Ch. 25 - Explain why automated pallet changers and...Ch. 25 - What types of materials are machine-tool bases...Ch. 25 - What is meant by the modular construction of...Ch. 25 - What is a hexapod? What are its advantages?
Ch. 25 - What factors contribute to costs in machining...Ch. 25 - List the reasons that temperature is important in...Ch. 25 - Explain the technical and economic factors that...Ch. 25 - Spindle speeds in machining centers vary over a...Ch. 25 - Explain the importance of stiffness and damping of...Ch. 25 - Are there machining operations described in...Ch. 25 - How important is the control of cutting-fluid...Ch. 25 - Review Fig. 25.10 on modular machining centers,...Ch. 25 - Prob. 19QLPCh. 25 - Describe the adverse effects of vibration and...Ch. 25 - Describe some specific situations in which thermal...Ch. 25 - Prob. 22QLPCh. 25 - Prob. 23QLPCh. 25 - Prob. 24QLPCh. 25 - List the parameters that influence the temperature...Ch. 25 - List and explain factors that contribute to poor...Ch. 25 - Prob. 27QLPCh. 25 - Prob. 28QLPCh. 25 - Describe types and sizes of workpieces that would...Ch. 25 - Prob. 30QLPCh. 25 - Explain the advantages and disadvantages of...Ch. 25 - What are the advantages and disadvantages of (a)...Ch. 25 - What would be the advantages and limitations of...Ch. 25 - Explain how you would go about reducing each of...Ch. 25 - Describe workpieces that would not be suitable for...Ch. 25 - Give examples of forced vibration or self-excited...Ch. 25 - A machining-center spindle and tool extend 10 in....Ch. 25 - Using the data given in the example, estimate the...Ch. 25 - A machining-center spindle and tool extend 12 in....Ch. 25 - In the production of a machined valve, the labor...Ch. 25 - Estimate the optimum cutting speed in Problem...Ch. 25 - Prob. 42QTPCh. 25 - If you were the chief engineer in charge of the...Ch. 25 - Prob. 45SDPCh. 25 - Make a list of components of machine tools that...Ch. 25 - The cost of machining and turning centers is...Ch. 25 - Prob. 49SDPCh. 25 - Describe your thoughts on whether or not it is...Ch. 25 - Prob. 51SDPCh. 25 - Prob. 53SDP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. It is required to machine a slot with length 100 mm, width 15 mm, and depth 4 mm. Calculate the length and pitch of the broach assuming a super-elevation of 0.15 mm/tooth. Calculate the main power in KW if the specific cutting resistance is 2000 N/mm2 and the cutting speed of 10 m/min is used.arrow_forwardExplain the following terms and situations in metal cutting. Give enough explanation with figures if it is necessary. A)Force and chatter vibrations. How can you detect the vibration during the machining? How can you decide which type of the vibration you have? B) Mode shapes. C)Mode coupling. D)Process damping. Which parameters can affect the process damping? i)Mode coupling. j) Regenerative chatter vibrations. k) Stability lobes.arrow_forwardA motorised metal guillotine machine is required to cut 45 mm diameter hole in a plate of 20 mm thickness at rate of 35 holes per minute. It requires a torque of 7 Nm for an area of hole in mm². If the cutting takes 1/10 of a second and the speed of it's flywheel varies from 165 rpm to 145 rpm, calculate 4.1)Energy required to cut a hole 4.2)Energy required for cutting work per second. 4.3)Maximum fluctuation of energy of the flywheel 4.4)Mass of the flywheel having radius of gyrations of 1,5 marrow_forward
- A 200 mm long magnesium alloy bar, 63 mm in diameter is turned on a lathe using a high speed steel cutter travelling at 180 mm/min. The spindle rotates at 450 rpm and lathe is equipped with a 10 kW motor, operating at a mechanical efficiency of 92%. The final diameter of the magnesium alloy bar is 59,5 mm. Indicate with a sketch the recommend size and location of the following tool angles: back rake, side rake, end relief, side relief and side and end cutting edge. Calculate the cutting time for the machining process.Calculate the required cutting force.arrow_forward22.5 Explain the applications and limitations of ceramic tools.arrow_forwardInvestigate the non-traditional machining methods. Describe each in your own words and sketch out the process and appropriate scale (inches/microns etc). Then tabulate the material removal mechanism, workpiece materials, applications, costs/speed, advantages and limitations/disadvantages of each. The slides are for your starting point. List references, articles, videos, etc... Mechanical Methods 1. Water Jet Machining (WJM) 2. Abrasive Water Jet Machining (AWJM) 3. Ultrasonic Machining (USM) Non-Mechanical Methods 1. Electrochemical Machining (ECM) 2. Electro-Discharge Machining (EDM) 3. Wire EDM 4. Laser Drilling 5. Electron beam machining (EBM)arrow_forward
- This Question is from Metal and Machine Tools. Due Today Please Answer !!arrow_forwardEstimate the time required to face mill a 10-inch long, 2-inch wide block of brass with a 6-inch diameter cutter with 10 high-speed steel inserts.arrow_forwardIn a machine test, a cutting speed of 100 m/min indicated the tool life as 16 min and a cutting speed of 200 m/min indicated the tool life as 4 min. Calculate the values of n and C.arrow_forward
- 2 2.46 Describe in detail your thoughts regarding the technical and economic factors involved in tool-material selection.arrow_forward11. Estimate the machining time required to rough turn a 0.5 m long annealed copper alloyRound bar from a 60 mm diameter to a 58 mm diameter, using a high-speed tool. Estimate the time required for an uncoated carbide tool.arrow_forwardA motorised metal guillotine machine is required to cut 45 mm diameter hole in a plate of 20 mm thickness at rate of 35 holes per minute. It requires a torque of 7 Nm for an area of hole in mm2. If the cutting takes 1/10 of a second and the speed of its flywheel varies from 165 rpm to 145 rpm, calculate: 1. Energy required to cut a hole. 2. Energy required for cutting work per second. 3. Maximum fluctuation of energy of the flywheel. 4. Mass of the flywheel having radius of gyration of 1.5 m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Most Common Metal Machining Processes (Metal Machining Video 1); Author: Sofeast Ltd;https://www.youtube.com/watch?v=uxVJ3qtezGw;License: Standard YouTube License, CC-BY
Machining process and Machine Tools; Author: Amar Gandhi;https://www.youtube.com/watch?v=X2mUJ8baaE0;License: Standard Youtube License