EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 18QLP
Review Fig. 25.10 on modular machining centers, and describe some workpieces and operations that would be suitable on such machines.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
PLEASE SUMMARIZE IT IN YOUR WORDS!
Identify some of the reasons why machining is commercially and technologically important.
For the following application, identify one or more nontraditional machining processes that might be used, and present arguments to support your selection. Assume that either the part geometry or the work material (or both) preclude the use of conventional machining. The application is a matrix of 0.1 mm (0.004 in) diameter holes in a plate of 3.2 mm (0.125 in) thick hardened tool steel. The matrix is rectangular, 75 by 125 mm (3.0 by 5.0 in) with the separation between holes in each direction = 1.6 mm ( 0.0625 in).
Chapter 25 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 25 - Describe the distinctive features of machining...Ch. 25 - Explain how the tooling system in a machining...Ch. 25 - Explain the trends in materials used for...Ch. 25 - Is there any difference between chatter and...Ch. 25 - What are the differences between forced and...Ch. 25 - Explain the importance of foundations in...Ch. 25 - Explain why automated pallet changers and...Ch. 25 - What types of materials are machine-tool bases...Ch. 25 - What is meant by the modular construction of...Ch. 25 - What is a hexapod? What are its advantages?
Ch. 25 - What factors contribute to costs in machining...Ch. 25 - List the reasons that temperature is important in...Ch. 25 - Explain the technical and economic factors that...Ch. 25 - Spindle speeds in machining centers vary over a...Ch. 25 - Explain the importance of stiffness and damping of...Ch. 25 - Are there machining operations described in...Ch. 25 - How important is the control of cutting-fluid...Ch. 25 - Review Fig. 25.10 on modular machining centers,...Ch. 25 - Prob. 19QLPCh. 25 - Describe the adverse effects of vibration and...Ch. 25 - Describe some specific situations in which thermal...Ch. 25 - Prob. 22QLPCh. 25 - Prob. 23QLPCh. 25 - Prob. 24QLPCh. 25 - List the parameters that influence the temperature...Ch. 25 - List and explain factors that contribute to poor...Ch. 25 - Prob. 27QLPCh. 25 - Prob. 28QLPCh. 25 - Describe types and sizes of workpieces that would...Ch. 25 - Prob. 30QLPCh. 25 - Explain the advantages and disadvantages of...Ch. 25 - What are the advantages and disadvantages of (a)...Ch. 25 - What would be the advantages and limitations of...Ch. 25 - Explain how you would go about reducing each of...Ch. 25 - Describe workpieces that would not be suitable for...Ch. 25 - Give examples of forced vibration or self-excited...Ch. 25 - A machining-center spindle and tool extend 10 in....Ch. 25 - Using the data given in the example, estimate the...Ch. 25 - A machining-center spindle and tool extend 12 in....Ch. 25 - In the production of a machined valve, the labor...Ch. 25 - Estimate the optimum cutting speed in Problem...Ch. 25 - Prob. 42QTPCh. 25 - If you were the chief engineer in charge of the...Ch. 25 - Prob. 45SDPCh. 25 - Make a list of components of machine tools that...Ch. 25 - The cost of machining and turning centers is...Ch. 25 - Prob. 49SDPCh. 25 - Describe your thoughts on whether or not it is...Ch. 25 - Prob. 51SDPCh. 25 - Prob. 53SDP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Investigate the non-traditional machining methods. Describe each in your own words and sketch out the process and appropriate scale (inches/microns etc). Then tabulate the material removal mechanism, workpiece materials, applications, costs/speed, advantages and limitations/disadvantages of each. The slides are for your starting point. List references, articles, videos, etc... Mechanical Methods 1. Water Jet Machining (WJM) 2. Abrasive Water Jet Machining (AWJM) 3. Ultrasonic Machining (USM) Non-Mechanical Methods 1. Electrochemical Machining (ECM) 2. Electro-Discharge Machining (EDM) 3. Wire EDM 4. Laser Drilling 5. Electron beam machining (EBM)arrow_forwardIn face milling, assume that the Diameter of the cutter is 200 mm, the width of the block is 60 mm, and the length of the block is 344 mm, if the depth of cut is 3 mm, = 0.6 mm/min, and N = 100 rpm. The cutter has 12 inserts, and the workpiece material is bronze. Calculate the estimated power required, the cutting force, and the torque.arrow_forwardThe following data is given for slab milling of a 300 mm long 50 mm wide mild steel block: Cutter of diameter= 60 mm; Numbers of teeth =12; Cutter speed = 120 rev/min; Depth of cut = 3.2 mm; Feed is 0.25 mm/tooth.Determine (i) Table feed in mm/min, (ii) MRR (iii) Power (iv) Torque and (v) Total machining time. Assumesuitable approach and over-run and specific energy of mild steel as 5 Ws/mm3.arrow_forward
- For the following application, identify one or more nontraditional machining processes that might be used, and present arguments to support your selection. Assume that either the part geometry or the work material (or both) preclude the use of conventional machining. The application is a through-hole in the shape of the letter L in a 12.5 mm (0.5 in) thick plate of glass. The size of the "L" is 25 by 15 mm (1.0 by 0.6 in) and the width of the hole is 3 mm (1/8 in).arrow_forwardEstimate the machining time that will be required to finish a vertical flat surface of length 100 mm and depth 20 mm by an end mill cutter of 32 mm diameter and 60 mm length in a milling machine. Assume cutting speed of 30 m/min and feed of 0.12 mm/tooth. Let over run distance equal to approach distance.arrow_forwardWhat is surface roughness? Surface finish is one of the most important measures for determining the quality of products in machining. Explain in some details.arrow_forward
- 1.State TWO (2) reasons for the need of using non-conventional machining processes instead of conventional machining processes.arrow_forwardhand write asap ( i'll give you multiple upvotearrow_forwardA 600mm*30mm flat surface of a plate is to be finish machined on a shaper .The plate has been fixed with 600 mm side along the tool travel direction. If the tool over-travel at each end of the plate is 20 mm, average cutting speed is 8 m/min, feed rate is 0.3 mm/stroke and the ratio of return time to cutting time of the tool is 1:2 Determine time required for machining?arrow_forward
- turning ? How is feed related to speed in machining operations such as Evaluate and Explain.arrow_forwardProblem 2. (Determining Cutting Speeds in Machining Economics) A turning operation is performed with HSS tooling on mild steel, with Taylor tool life parameters n = 0.12, C = 60 m/min. Work part length = 450 mm and diameter = 80 mm. Feed = 0.20 mm/rev. Handling time per piece = 4.0 min, and tool change time = 1.5 min. Cost of machine and operator = $27/hr, and tooling cost = $2 per cutting edge. Find the a. cutting speed for maximum production rate = 44.997m/min. b. cutting speed for minimum cost = 38.143m/min. Problem 3. (Production Rate and Cost in Machining Economics) For the two cutting speeds computed in problem 2, determine: a. the hourly production rate and b. the cost per piece. Need help with problem 3 already done problem 2arrow_forwardProblem 2. (Determining Cutting Speeds in Machining Economics) A turning operation is performed with HSS tooling on mild steel, with Taylor tool life parameters n = 0.12, C = 60 m/min. Work part length = 450 mm and diameter = 80 mm. Feed = 0.20 mm/rev. Handling time per piece = 4.0 min, and tool change time = 1.5 min. Cost of machine and operator = $27/hr, and tooling cost = $2 per cutting edge. Find the a. cutting speed for maximum production rate and b. cutting speed for minimum cost Problem 3. (Production Rate and Cost in Machining Economics) For the two cutting speeds computed in problem 2, determine: the hourly production rate and a. b. the cost per piece.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License