Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 26PQ
Three point charges q1 = 2.0 nC, q2 = −4.0 nC, and q3 = −3.0 nC are placed as shown in Figure P25.26. Find the electric flux through each of the closed Gaussian surfaces C1, C2, C3, and C4.
FIGURE P25.26
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A hollow non-conducting spherical shell has inner radius R1 = 9 cm and outer radius R2 = 18 cm. A charge Q = -45 nC lies at the center of the shell. The shell carries a spherically symmetric charge density ρ = Ar for R1 < r < R2 that increases linearly with radius, where A = 19 μC/m4.
a. What is the radial electric field at the point r = 0.5R1? Give the answer in units of kN/C, and take the positive direction outwards.
b. What is the radial electric field at the point r = 0.5(R1+R2)? Give your answer in units of kN/C.
c. What is the radial electric field at the point r = 2R2? Give your answer in units of kN/C.
a.
Chapter 22, Problem 030 SN
X Incorrect.
The figure shows two concentric rings, of radii Rs and R, that lie on the same plane.
Point P lies on the central z axis, at distance D from the center of the rings. The smaller
ring has uniformly distributed charge Qs. What is the uniformly distributed charge on the
larger ring if the net electric field at P is zero? State your answer in terms of the given
variables.
QL =
R
L+D
(R):
21
5+D
A hollow non-conducting spherical shell has inner radius R1 = 9 cm and outer radius R2 = 15 cm. A charge Q = -25 nC lies at the center of the shell. The shell carries a spherically symmetric charge density ρ = Ar for R1 < r < R2 that increases linearly with radius, where A = 17 μC/m4. What is the radial electric field at the point r = 2R2? Give your answer in units of kN/C.
Chapter 25 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 25.1 - a. List all the uppercase letters that have the...Ch. 25.2 - The terms electric force, electric field, and...Ch. 25.2 - Prob. 25.3CECh. 25.3 - Which of the following expressions are correct...Ch. 25.3 - Find the electric flux through the three Gaussian...Ch. 25.4 - Prob. 25.6CECh. 25.7 - Is it possible for the charged solid sphere in...Ch. 25 - Which word or name has the same symmetry as the...Ch. 25 - Prob. 2PQCh. 25 - Prob. 3PQ
Ch. 25 - Prob. 4PQCh. 25 - Prob. 5PQCh. 25 - Prob. 6PQCh. 25 - A positively charged sphere and a negatively...Ch. 25 - A circular hoop of radius 0.50 m is immersed in a...Ch. 25 - Prob. 9PQCh. 25 - If the hemisphere (surface C) in Figure 25.10...Ch. 25 - A Ping-Pong paddle with surface area 3.80 102 m2...Ch. 25 - Prob. 12PQCh. 25 - A pyramid has a square base with an area of 4.00...Ch. 25 - Prob. 14PQCh. 25 - Prob. 15PQCh. 25 - A circular loop with radius r is rotating with...Ch. 25 - A circular loop with radius r is rotating with...Ch. 25 - Prob. 18PQCh. 25 - What is the net electric flux through each of the...Ch. 25 - Prob. 20PQCh. 25 - The colored regions in Figure P25.21 represent...Ch. 25 - Prob. 22PQCh. 25 - Prob. 23PQCh. 25 - Three particles and three Gaussian surfaces are...Ch. 25 - A Using Gausss law, find the electric flux through...Ch. 25 - Three point charges q1 = 2.0 nC, q2 = 4.0 nC, and...Ch. 25 - Prob. 27PQCh. 25 - A very long, thin wire fixed along the x axis has...Ch. 25 - Figure P25.29 shows a wry long tube of inner...Ch. 25 - Two very long, thin, charged rods lie in the same...Ch. 25 - Prob. 31PQCh. 25 - Two long, thin rods each have linear charge...Ch. 25 - Figure P25.33 shows a very long, thick rod with...Ch. 25 - A very long line of charge with a linear charge...Ch. 25 - Two infinitely long, parallel lines of charge with...Ch. 25 - An infinitely long wire with uniform linear charge...Ch. 25 - Prob. 37PQCh. 25 - Prob. 38PQCh. 25 - Prob. 39PQCh. 25 - Prob. 40PQCh. 25 - Two uniform spherical charge distributions (Fig....Ch. 25 - FIGURE P25.41 Problems 41 and 42. Two uniform...Ch. 25 - The nonuniform charge density of a solid...Ch. 25 - Prob. 44PQCh. 25 - What is the magnitude of the electric field just...Ch. 25 - Prob. 46PQCh. 25 - The infinite sheets in Figure P25.47 are both...Ch. 25 - Prob. 48PQCh. 25 - Prob. 49PQCh. 25 - Prob. 50PQCh. 25 - A very large, flat slab has uniform volume charge...Ch. 25 - FIGURE P25.41 Problems 51 and 52. Find the surface...Ch. 25 - Prob. 53PQCh. 25 - Prob. 54PQCh. 25 - If the magnitude of the surface charge density of...Ch. 25 - A spherical conducting shell with a radius of...Ch. 25 - A charged rod is placed in the center along the...Ch. 25 - A charged rod is placed in the center along the...Ch. 25 - A thick spherical conducting shell with an inner...Ch. 25 - A thick spherical conducting shell with an inner...Ch. 25 - A rectangular plate with sides 0.60 m and 0.40 m...Ch. 25 - Prob. 62PQCh. 25 - Prob. 63PQCh. 25 - A uniform spherical charge distribution has a...Ch. 25 - A rectangular surface extends from x = 0 to x =...Ch. 25 - A uniform electric field E = 1.57 104 N/C passes...Ch. 25 - A solid plastic sphere of radius R1 = 8.00 cm is...Ch. 25 - Examine the summary on page 780. Why are...Ch. 25 - Prob. 69PQCh. 25 - Prob. 70PQCh. 25 - Prob. 71PQCh. 25 - A coaxial cable is formed by a long, straight wire...Ch. 25 - Prob. 73PQCh. 25 - Prob. 74PQCh. 25 - A solid sphere of radius R has a spherically...Ch. 25 - A solid sphere of radius R has a spherically...Ch. 25 - A very large, horizontal conducting square plate...Ch. 25 - Prob. 78PQCh. 25 - A particle with charge q = 7.20 C is surrounded by...Ch. 25 - A sphere with radius R has a charge density given...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- FIGURE P25.41 Problems 41 and 42. Two uniform spherical charge distributions (Fig. P25.41) each have a total charge of 45.3 mC and radius R = 15.2 cm. Their center-to-center distance is 37.50 cm. Find the magnitude of the electric field at point B, 7.50 cm from the center of one sphere and 30.0 cm from the center of the other sphere.arrow_forwardA semicircular wire of radius R is uniformly charged with Q₁ = 4.4Q and located in a two dimensional coordinate system as shown in the figure. A point charge Q₂ = 0.4Q is placed at 0.7R on the y-axis. Determine the electric field at point o in terms of kQ/R² where is the unit vector. Take rt-3.14 and provide your answer with two decimal places. Answer: Q₁ Q₂❤ 0 R Xxarrow_forwardA solid insulating sphere of radius 0.06 cm carries a total charge of 30 nC. OConcentric with this sphere is a conducting spherical shell with an inner radius of 0.13 cm and an outer radius of 0.17 cm and carrying a total charge of -15 nC. Find the magnitude of the electric field at r = 0.20 cm from the center of the two spheres and shell. N O 2.157æ103 N O 2.157x106 N C O 2.157x10° ANarrow_forward
- The figure shows a closed Gaussian surface in the shape of a cube of edge length 2.80 m, with one corner at x₁=5.00 m,y₁ =4.50 m. The cube lies in a region where the electric field vector is given by E-2.001-3.60 y2 +2.80 KN/C, with y in meters. What is the net charge contained by the cube? Number i Unitsarrow_forwardThe figure gives the magnitude of the electric field inside and outside a sphere with a positive charge distributed uniformly throughout its volume. The scale of the vertical axis is set by Es = 4.3 × 107 N/C. What is the charge on the sphere?arrow_forwardChapter 22, Problem 032 Your answer is partially correct. Try again. In the figure positive charge q = 8.50 pC is spread uniformly along a thin nonconducting rod of length L 14.0 cm, what are the (a) x-and (b) y- components of the electric field produced at point P, at distance R = 6.00 cm from the rod along its perpendicular bisector? Units (a) Number N/C or V/m UnitsT N/C or V/marrow_forward
- Two large, parallel, non-conducting sheets, each with a fixed uniform charge on one side, have surface charge densities of o+ = +7.4 µC/m2 for the positively charged sheet, and o- = -5.3 µC/m2 for the negatively charged sheet. +y What is the magnitude of the electric field in the region above both the sheets? Express your answer to the nearest kN/C.arrow_forwardThe figure shows, in cross section, three infinitely large nonconducting sheets on which charge is uniformly spread. The surface charge densities are 01 = 3.60 µC/m², 02 = 2.34 uC/m2, and 03 = -4.03 µC/m2, and distance L = 1.65 cm. What are the (a) x and (b) y components of the net electric field at point P? P. L/2 2L (a) Number i Units (b) Number Unitsarrow_forwardSolve it correctly please. I will rate accordingly with 3votes.arrow_forward
- Assume the magnitude of the electric field on each face of the cube of edge L = 1.00 m in Figure P23.32 is uniform and the directions of the fields on each face are as indicated. Find (a) the net electric flux through the cube and (b) the net charge inside the cube. (c) Could the net charge he a single point charge?arrow_forwardAn infinitely long sheet of charge of width L lies in the xy-plane between x = -L/2 and x =L/2. The surface charge density is n. Derive an expression for the electric field E at height z above the centerline of the sheet. Express your answer in terms of some or all of the variables €0, 7, 7, L, z, and unit vector k. Use the 'unit vector' button to denote unit vectors in your answer. E =arrow_forwardA solid insulating sphere of radius 5 cm carries electric charge uniformly distributed throughout its volume. Concentric with the sphere is a conducting spherical shell with no net charge as shown in Figure OQ24.9. The inner radius of the shell is 10 cm, and the outer radius is 15 cm. No other charges are nearby. (a) Rank the magnitude of the electric Held at points A (at radius 4 cm), B (radius 8 cm), C (radius 12 cm), and I) (radius 16 cm) from largest to smallest. Display any cases of equality in your ranking, (b) Similarly rank the electric flux through concentric spherical surfaces through points A, B. C, and D.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY