Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 38PQ
(a)
To determine
To show that
(b)
To determine
The plot for the equations
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A circular plastic disk with radius R = 2.00 cm has a uniformly distributed charge
Q = +(2.00 x 106)e on one face. A circular ring of width 30 µm is centered on that
face, with the center of that width at radius r = 0.50 cm. In coulombs, what charge is
contained within the width of the ring?
In the figure six charged particles surround particle 7 at radial distances of either d = 26.0 cm or 2d, as drawn. The charges are q1 = +54e, q2 = +68e, q3 = +27e, q4 = +108e, q5 = +34e, q6 = +136e, q7 = +6e, with e = 1.60 × 10-19C. What is the magnitude of the net electrostatic force on particle 7?
A charged oil drop of mass m=8.00×10-4 kg is held floating (at rest) between two infinite plates. The plates
are uniformly charged with densities +o and -o, where o= 1.1 nC/m2. Find the charge Q (in uC) of the oil
drop.
+o
Chapter 25 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 25.1 - a. List all the uppercase letters that have the...Ch. 25.2 - The terms electric force, electric field, and...Ch. 25.2 - Prob. 25.3CECh. 25.3 - Which of the following expressions are correct...Ch. 25.3 - Find the electric flux through the three Gaussian...Ch. 25.4 - Prob. 25.6CECh. 25.7 - Is it possible for the charged solid sphere in...Ch. 25 - Which word or name has the same symmetry as the...Ch. 25 - Prob. 2PQCh. 25 - Prob. 3PQ
Ch. 25 - Prob. 4PQCh. 25 - Prob. 5PQCh. 25 - Prob. 6PQCh. 25 - A positively charged sphere and a negatively...Ch. 25 - A circular hoop of radius 0.50 m is immersed in a...Ch. 25 - Prob. 9PQCh. 25 - If the hemisphere (surface C) in Figure 25.10...Ch. 25 - A Ping-Pong paddle with surface area 3.80 102 m2...Ch. 25 - Prob. 12PQCh. 25 - A pyramid has a square base with an area of 4.00...Ch. 25 - Prob. 14PQCh. 25 - Prob. 15PQCh. 25 - A circular loop with radius r is rotating with...Ch. 25 - A circular loop with radius r is rotating with...Ch. 25 - Prob. 18PQCh. 25 - What is the net electric flux through each of the...Ch. 25 - Prob. 20PQCh. 25 - The colored regions in Figure P25.21 represent...Ch. 25 - Prob. 22PQCh. 25 - Prob. 23PQCh. 25 - Three particles and three Gaussian surfaces are...Ch. 25 - A Using Gausss law, find the electric flux through...Ch. 25 - Three point charges q1 = 2.0 nC, q2 = 4.0 nC, and...Ch. 25 - Prob. 27PQCh. 25 - A very long, thin wire fixed along the x axis has...Ch. 25 - Figure P25.29 shows a wry long tube of inner...Ch. 25 - Two very long, thin, charged rods lie in the same...Ch. 25 - Prob. 31PQCh. 25 - Two long, thin rods each have linear charge...Ch. 25 - Figure P25.33 shows a very long, thick rod with...Ch. 25 - A very long line of charge with a linear charge...Ch. 25 - Two infinitely long, parallel lines of charge with...Ch. 25 - An infinitely long wire with uniform linear charge...Ch. 25 - Prob. 37PQCh. 25 - Prob. 38PQCh. 25 - Prob. 39PQCh. 25 - Prob. 40PQCh. 25 - Two uniform spherical charge distributions (Fig....Ch. 25 - FIGURE P25.41 Problems 41 and 42. Two uniform...Ch. 25 - The nonuniform charge density of a solid...Ch. 25 - Prob. 44PQCh. 25 - What is the magnitude of the electric field just...Ch. 25 - Prob. 46PQCh. 25 - The infinite sheets in Figure P25.47 are both...Ch. 25 - Prob. 48PQCh. 25 - Prob. 49PQCh. 25 - Prob. 50PQCh. 25 - A very large, flat slab has uniform volume charge...Ch. 25 - FIGURE P25.41 Problems 51 and 52. Find the surface...Ch. 25 - Prob. 53PQCh. 25 - Prob. 54PQCh. 25 - If the magnitude of the surface charge density of...Ch. 25 - A spherical conducting shell with a radius of...Ch. 25 - A charged rod is placed in the center along the...Ch. 25 - A charged rod is placed in the center along the...Ch. 25 - A thick spherical conducting shell with an inner...Ch. 25 - A thick spherical conducting shell with an inner...Ch. 25 - A rectangular plate with sides 0.60 m and 0.40 m...Ch. 25 - Prob. 62PQCh. 25 - Prob. 63PQCh. 25 - A uniform spherical charge distribution has a...Ch. 25 - A rectangular surface extends from x = 0 to x =...Ch. 25 - A uniform electric field E = 1.57 104 N/C passes...Ch. 25 - A solid plastic sphere of radius R1 = 8.00 cm is...Ch. 25 - Examine the summary on page 780. Why are...Ch. 25 - Prob. 69PQCh. 25 - Prob. 70PQCh. 25 - Prob. 71PQCh. 25 - A coaxial cable is formed by a long, straight wire...Ch. 25 - Prob. 73PQCh. 25 - Prob. 74PQCh. 25 - A solid sphere of radius R has a spherically...Ch. 25 - A solid sphere of radius R has a spherically...Ch. 25 - A very large, horizontal conducting square plate...Ch. 25 - Prob. 78PQCh. 25 - A particle with charge q = 7.20 C is surrounded by...Ch. 25 - A sphere with radius R has a charge density given...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In Figure P24.49, a charged particle of mass m = 4.00 g and charge q = 0.250 C is suspended in static equilibrium at the end of an insulating thread that hangs from a very long, charged, thin rod. The thread is 12.0 cm long and makes an angle of 35.0 with the vertical. Determine the linear charge density of the rod. FIGURE P24.49arrow_forwardIn the diagram below the E field at point P is zero particles ANB are charged QA =2 uc and Qb= 138 uc. A and B are 4 m apart, determine X distance between a and p and magnitudearrow_forward8:09 l 4G I a Imssb1.mutah.edu.jo A small mass charged sphere ( q= 3 µC ) is attached by an insulating string to the surface of a very large conductor with a surface charge density of o = 76.3 µC. Given that the string makes an angle with the surface equal to 30 degrees, find the tension ( in N) in the string. use ɛg = 8.8542x10-12 F.m-1. String Select one: O A. 29.85 B. 51.70 O.7755 OD. 102.15 OE. 25.85 Clear my choice Previous page Next page + + + + + + +arrow_forward
- A helium nucleus (mass = 6.64 × 10-27 kg, net charge = +2e) is fired directly toward a spherical conductor on a radially inward path. The conductor, which is fixed in place, has radius R = 0.55 m and surface charge density o = +12 nC/m². If the helium nucleus is initially very far away from the conductor, then what initial speed must it be given so that it just barely avoids touching the surface of the conductor before being repelled back to infinity? Make sure to draw a voltage vs. position curve for the spherical conductor as part of your representation.arrow_forwardA straight rod of length L = 22.60 cm carries a uniform O P charge density 1 = 1.80 × 10-6 C/m. The rod is located along the y-axis from y = 0.00 to y2 = L. The Coulomb force constant is k = 8.99 × 10° N-m²/C?. Find the expression for the electric field along the y-axis E, at a point P. What is the magnitude of the electric field at Yo = 55.00 cm? Yo N/C E, = L. +++ + + + + + + + + + + t + +arrow_forwardAn electron and a mystery charge 5.3 x 10^-11 m apart attracts each other with a force of 2.61 x 10^12 N. Calculate the value of the mystery charge (in C). The answer (in fundamental Si unit) is (type the numeric value only)arrow_forward
- A circular plastic disk with radius R = 4.23 cm has a uniformly distributed charge Q = +(1.79 x10º)e on one face. A circular ring of width 29.1 um is centered on that face, with the center of that width at radius r = 0.706 cm. In coulombs, what charge is contained within the width of the ring? Number i Unitsarrow_forwardA charged nonconducting rod has a length L of 2.0 m and a cross-sectional area A of 8.0 cm?; it is placed along the positive side of an x axis with one end at the origin. The volume charge density p is the charge per unit volume, with the units of coulomb per cubic meter. a) How many excess electrons are on the rod if the rod's volume charge density pu is uniform with a value of –10 µC/m³? How does that compare to the total number of electrons you would estimate would be in the rod? (By compare, just a ballpark estimate- to within several orders of magnitude, factors of ten). b) What is an expression for the number of excess electrons on the rod if the rod's volume charge is nonuniform and is given instead by pN=ax³ where a is a constant? c) What value of a is necessary for the rod in part b to have the same number of excess electrons as the rod in part a)?arrow_forwardAn infinite sheet of charge with surface charge density o = -87 C/m? lives in the x-y plane. A thin rod of charge with length L = 13.0 cm is placed along the +z-axis that the end closest to the sheet is located a distance d = 2.0cm away from the sheet. When held at this position, the linear charge density of the rod can be described by K =az, where a = +35 nC/m. 1, What is the force F on the rod from the sheet? 2, Can you draw a picture to represent it?arrow_forward
- A point charge, q = -5.00 nC, and m = 2.00 x 10-14 kg, is shot vertically upward with an initial speed of 2.00 x 103 m/s from a thin, infinite, planar sheet of uniform charge with surface charge density of σ = +4.00 (nC)/m^2. To what vertical elevation will q rise above the sheet of charge? Neglect gravity. a. 2.43 cm b. 0.635 cm c. 1.20 cm d. 3.54 cm e. 1.97 cmarrow_forwardA cylindrical shell of radius 10 cm and length 256 cm has its charge density uniformly dis- tributed on its surface. intensity. at a point 28.5 cm radially outward from its axis (measured from the midpoint of the shell) is 50500 N/C. What is the net charge on the shell? The Coulomb constant is 8.99 x 10° N m'/C. Answer in units of C. Your answer must be within + 5.0% The electric field What is the electric field at a point 5.03 cm from the axis? Answer in units of N/C. Your answer must be within + 5.0%arrow_forward(a) Figure (a) shows a nonconducting rod of length L-5.10 cm and uniform linear charge density = +8.35 pC/m. Take V = 0 at infinity. What is V at point P at distance d = 7.60 cm along the rod's perpendicular bisector? (b) Figure (b) shows an identical rod except that one half is now negatively charged. Both halves have a linear charge density of magnitude 8.35 pC/m. With V-0 at infinity, what is V at P? P L/2 L/2- (a) L/21/2 (b) (a) Number i Units (b) Number i Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY