Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 25, Problem 78PQ
To determine
The electric field as a function of the radial distance within the charge distribution.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a through c please
A charge of -90.4 uC is placed on spherical conductor of radius 10.0 cm.
Part (a) What is the magnitude, in newtons per coulmb, of the electric field due to this charge at a distance of 1.32 cm from the center of the sphere? Give your answer in N/C.
Part (b) What is the magnitude, in newtons per coulmb, of the electric field due to this charge at a distance of 7.08 cm from the center of the sphere? Give your answer in N/C.
Part (c) What is the magnitude, in newtons per coulmb, of the electric field due to this charge at a distance of 17.1 cm from the center of the sphere. Give your answer in N/C.
Consider a cylindrical distribution of charge whose base coincides with the plane z = 0 and axis on the z-axis. The cylindrical surface has a length L with radius rho and has a uniform charge distribution rho s C/m^2 on its surface. The aim is to determine the electric field intensity at a distance P(0, 0, h). Please draw the figure describing the problem.
A. Related to the problem, the electric field intensity of the z-axis of a ring of charge shown in pic 2 is in pic 1. How can we prove such equation?
B. Now, if you take a strip on the cylindrical surface in a form of a ring, a distance z from the origin with a differential height of dz, what is then the differential expression of electric field intensity ( dE ) at point P? Show the diagram for the extracted differential strip.
C. With the same problem, what is the expression of d rhoL?
D. With the same problem also, to find E vector at point P, we intergrate dE vector at (B) from z = 0 to z = L. What then is E vector?
E. Lastly for…
Z
You are calculating the electric field in all space given the above infinite slab of charge in the x-y plane,
centered on z=0. The slab has an inhomogeneous charge density given by p = 5.5|2| in units of C/m³.
The slab has a thickness of 5.2m in the z direction.
1) What is the magnitude of the electric field as a function of z inside the slab? Give your answers in
terms of [2], and epsilon.
E(2| 2.6m)
=
for 2 2.6m
Chapter 25 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 25.1 - a. List all the uppercase letters that have the...Ch. 25.2 - The terms electric force, electric field, and...Ch. 25.2 - Prob. 25.3CECh. 25.3 - Which of the following expressions are correct...Ch. 25.3 - Find the electric flux through the three Gaussian...Ch. 25.4 - Prob. 25.6CECh. 25.7 - Is it possible for the charged solid sphere in...Ch. 25 - Which word or name has the same symmetry as the...Ch. 25 - Prob. 2PQCh. 25 - Prob. 3PQ
Ch. 25 - Prob. 4PQCh. 25 - Prob. 5PQCh. 25 - Prob. 6PQCh. 25 - A positively charged sphere and a negatively...Ch. 25 - A circular hoop of radius 0.50 m is immersed in a...Ch. 25 - Prob. 9PQCh. 25 - If the hemisphere (surface C) in Figure 25.10...Ch. 25 - A Ping-Pong paddle with surface area 3.80 102 m2...Ch. 25 - Prob. 12PQCh. 25 - A pyramid has a square base with an area of 4.00...Ch. 25 - Prob. 14PQCh. 25 - Prob. 15PQCh. 25 - A circular loop with radius r is rotating with...Ch. 25 - A circular loop with radius r is rotating with...Ch. 25 - Prob. 18PQCh. 25 - What is the net electric flux through each of the...Ch. 25 - Prob. 20PQCh. 25 - The colored regions in Figure P25.21 represent...Ch. 25 - Prob. 22PQCh. 25 - Prob. 23PQCh. 25 - Three particles and three Gaussian surfaces are...Ch. 25 - A Using Gausss law, find the electric flux through...Ch. 25 - Three point charges q1 = 2.0 nC, q2 = 4.0 nC, and...Ch. 25 - Prob. 27PQCh. 25 - A very long, thin wire fixed along the x axis has...Ch. 25 - Figure P25.29 shows a wry long tube of inner...Ch. 25 - Two very long, thin, charged rods lie in the same...Ch. 25 - Prob. 31PQCh. 25 - Two long, thin rods each have linear charge...Ch. 25 - Figure P25.33 shows a very long, thick rod with...Ch. 25 - A very long line of charge with a linear charge...Ch. 25 - Two infinitely long, parallel lines of charge with...Ch. 25 - An infinitely long wire with uniform linear charge...Ch. 25 - Prob. 37PQCh. 25 - Prob. 38PQCh. 25 - Prob. 39PQCh. 25 - Prob. 40PQCh. 25 - Two uniform spherical charge distributions (Fig....Ch. 25 - FIGURE P25.41 Problems 41 and 42. Two uniform...Ch. 25 - The nonuniform charge density of a solid...Ch. 25 - Prob. 44PQCh. 25 - What is the magnitude of the electric field just...Ch. 25 - Prob. 46PQCh. 25 - The infinite sheets in Figure P25.47 are both...Ch. 25 - Prob. 48PQCh. 25 - Prob. 49PQCh. 25 - Prob. 50PQCh. 25 - A very large, flat slab has uniform volume charge...Ch. 25 - FIGURE P25.41 Problems 51 and 52. Find the surface...Ch. 25 - Prob. 53PQCh. 25 - Prob. 54PQCh. 25 - If the magnitude of the surface charge density of...Ch. 25 - A spherical conducting shell with a radius of...Ch. 25 - A charged rod is placed in the center along the...Ch. 25 - A charged rod is placed in the center along the...Ch. 25 - A thick spherical conducting shell with an inner...Ch. 25 - A thick spherical conducting shell with an inner...Ch. 25 - A rectangular plate with sides 0.60 m and 0.40 m...Ch. 25 - Prob. 62PQCh. 25 - Prob. 63PQCh. 25 - A uniform spherical charge distribution has a...Ch. 25 - A rectangular surface extends from x = 0 to x =...Ch. 25 - A uniform electric field E = 1.57 104 N/C passes...Ch. 25 - A solid plastic sphere of radius R1 = 8.00 cm is...Ch. 25 - Examine the summary on page 780. Why are...Ch. 25 - Prob. 69PQCh. 25 - Prob. 70PQCh. 25 - Prob. 71PQCh. 25 - A coaxial cable is formed by a long, straight wire...Ch. 25 - Prob. 73PQCh. 25 - Prob. 74PQCh. 25 - A solid sphere of radius R has a spherically...Ch. 25 - A solid sphere of radius R has a spherically...Ch. 25 - A very large, horizontal conducting square plate...Ch. 25 - Prob. 78PQCh. 25 - A particle with charge q = 7.20 C is surrounded by...Ch. 25 - A sphere with radius R has a charge density given...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid sphere of radius R has a spherically symmetrical, nonuniform volume charge density given by (r) = A/r, where r is the radial distance from the center of the sphere in meters, and A is a constant such that the density has dimensions of M/L3. Sketch a graph of the magnitude of the electric field as a function of distance for 0 r 3R.arrow_forwardA solid sphere of radius R has a spherically symmetrical, nonuniform volume charge density given by (r) = A/r, where r is the radial distance from the center of the sphere in meters, and A is a constant such that the density has dimensions M/L3. a. Calculate the total charge in the sphere. b. Using the answer to part (a), write an expression for the magnitude of the electric field outside the spherethat is, for some distance r R. c. Find an expression for the magnitude of the electric field inside the sphere at position r R.arrow_forwardA sphere with radius R has a charge density given by = cr3. Use Gausss law to find an expression for the magnitude of the electric field at a distance r from the center of the sphere, where a. r R and b. r R.arrow_forward
- A thin wire with linear charge density =0y0(14+1y) extends from y0 = 1.00 m to infinity. If 0 = 1.45 105 C/m, what is the magnitude of the electric field due to this wire at the origin (y is measured in meters)?arrow_forwardOften we have distributions of charge for which integrating to find the electric field may not be possible in practice. In such cases, we may be able to get a good approximate solution by dividing the distribution into small but finite particles and taking the vector sum of the contributions of each. To see how this might work, consider a very thin rod of length L = 16 cm with uniform linear charge density = 50.0 nC/m. Estimate the magnitude of the electric field at a point P a distance d = 8.0 cm from the end of the rod by dividing it into n segments of equal length as illustrated in Figure P24.21 for n = 4. Treat each segment as a particle whose distance from point P is measured from its center. Find estimates of EP for n = 1, 2, 4, and 8 segments. FIGURE P24.21arrow_forwardA coaxial cable is formed by a long, straight wire and a hollow conducting cylinder with axes that coincide. The wire has charge per unit length = 20, and the hollow cylinder has net charge per unit length = 30. Use Gausss law to answer these questions: What are the charges per unit length on a. the inner surface and b. the outer surface of the hollow cylinder? c. What is the electric field a radial distance d from the axis of the coaxial cable?arrow_forward
- A very long, thin wire fixed along the x axis has a linear charge density of 3.2 C/m. a. Determine the electric field at point P a distance of 0.50 m from the wire. b. If there is a test charge q0 = 12.0 C at point P, what is the magnitude of the net force on this charge? In which direction will the test charge accelerate?arrow_forwardA Ping-Pong paddle with surface area 3.80 102 m2 is placed in a uniform electric field of magnitude 1.10 106 N/C. a. What is the magnitude of the electric flux through the paddle when the electric field is parallel to the paddles surface? b. What is the magnitude of the electric flux through the paddle when the electric field is perpendicular to the paddles surface?arrow_forwardA solid plastic sphere of radius R1 = 8.00 cm is concentric with an aluminum spherical shell with inner radius R2 = 14.0 cm and outer radius R3 = 17.0 cm (Fig. P25.67). Electric field measurements are made at two points: At a radial distance of 34.0 cm from the center, the electric field has magnitude 1.70 103 N/C and is directed radially outward, and at a radial distance of 12.0 cm from the center, the electric field has magnitude 9.10 104 N/C and is directed radially inward. What are the net charges on a. the plastic sphere and b. the aluminum spherical shell? c. What are the charges on the inner and outer surfaces of the aluminum spherical shell? FIGURE P25.67arrow_forward
- Part A A sphere has total charge Q=15 C and radius R. Letr be the radial distance measured from the center of the sphere. The sphere's charge is distributed in such a way that the volume charge density is proportional to the cube of r, that is p(r )=ar³ for some constant a. If the electric field magnitude is E= 20 N/C at r = R/5, what is E at r = 5R? 1 k= = 8.99 x 10⁹ Nm²/C². 4760 Express your answer with the appropriate units. E= Submit Part B ol O Value Submit Part C Value μÁ An infinitely long cylinder has uniform volume charge density and radius R. If the electric field magnitude is E = 20 N/C at r = R/5, what is E at r = 5R? r is the distance from the centeral axis of the cylinder. Request Answer μA Units Units Request Answer ? ? An infinitely big block of thickness 2R and uniform volume charge density extends infinitely in the x-y plane, and fills the region -Rarrow_forwardA spherically symmetric charge distribution produces an electric field E = (6250 r2) r N/C (here r is the unit vector in the radial direction). a. What is the electric field strength at r = 17 cm?arrow_forwarda Consider a region of the shape of a rectangular box in the three dimensional coordinate system shown in the figure. For the electric field of the form E=5yj ,what is the amount of electric charge inside the box? 5b Eo 5b/ E0 5acEo 5ac/ Eo 5 abceo 5 abc/ Eoarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY