EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
EBK GENERAL, ORGANIC, AND BIOLOGICAL CH
7th Edition
ISBN: 8220100853180
Author: STOKER
Publisher: CENGAGE L
bartleby

Concept explainers

Question
Book Icon
Chapter 25, Problem 25.80EP

(a)

Interpretation Introduction

Interpretation:

Whether the occurrence of two different dehydrogenation reactions is a characteristic of (1) the β-oxidation pathway but not ketogenesis, (2) ketogenesis but not β-oxidation pathway, (3) both the β-oxidation pathway and ketogenesis or (4) neither the β-oxidation pathway nor ketogenesis has to be determined.

Concept introduction:

Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.

β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain that cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.

(b)

Interpretation Introduction

Interpretation:

Whether the breakdown of a molecule into two parts is a characteristic of (1) the β-oxidation pathway but not ketogenesis, (2) ketogenesis but not β-oxidation pathway, (3) both the β-oxidation pathway and ketogenesis or (4) neither the β-oxidation pathway nor ketogenesis has to be determined.

Concept introduction:

Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.

β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain that cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.

(c)

Interpretation Introduction

Interpretation:

Whether the occurrence of a hydrolysis reaction is a characteristic of (1) the β-oxidation pathway but not ketogenesis, (2) ketogenesis but not β-oxidation pathway, (3) both the β-oxidation pathway and ketogenesis or (4) neither the β-oxidation pathway nor ketogenesis has to be determined.

Concept introduction:

Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.

β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain that cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.

(d)

Interpretation Introduction

Interpretation:

Whether the occurrence of a hydration reaction is a characteristic of (1) the β-oxidation pathway but not ketogenesis, (2) ketogenesis but not β-oxidation pathway, (3) both the β-oxidation pathway and ketogenesis or (4) neither the β-oxidation pathway nor ketogenesis has to be determined.

Concept introduction:

Ketogenesis occurs in the mitochondria of the liver cells. The initial reactants are the molecules of acetyl CoA which are produced by the β-oxidation of fatty acid molecules. Ketone bodies are generally produced when the amount of acetyl CoA in the body is much larger than the amount of oxaloacetate. This happens due to the carbohydrate-lipid imbalance in the body caused by much smaller intake of food rich in carbohydrates, or inefficient processing of glucose by the body.

β-oxidation is a catabolic process occurring in the body through which, fatty acid molecules are broken down in the mitochondria of the cells to generate energy. The process involves breaking down long fatty acid chains that have been converted to acyl CoA chains into smaller fatty acyl CoA chains. The fatty acid chain is broken down until the final acyl CoA chain that cannot be broken down any further. The end products of this metabolic process are acetyl CoA, FADH2 and NADH. These three molecules later enter the Krebs cycle where they are used to produce ATP molecules.

Blurred answer
Students have asked these similar questions
eks.com/aleksogi/x/sl.exe/1o_u-IgNslkr7j8P3jH-IQs_pBanHhvTCeeBZbufuBYTI0Hz7m7D3ZS17Hd6m-HIl6n52njJN-TXdQA2X9yID-1SWQJTgnjARg30 111 States of Matter Understanding conceptual components of the enthalpy of solution 0/5 Ge A small amount of acetonitrile (CH, CN) is dissolved in a large amount of water. Imagine separating this process into the four stages sketched below. (These sketches show only a portion of the substances, so you can see the density and distribution of atoms and molecules in them.) CH,CN H₂O B 88 C Use these sketches to answer the questions in the table below. The enthalpy of solution AH is negative soln when CH3CN dissolves in water. Use this information to list the stages in order of increasing enthalpy. Would heat be absorbed or released if the system moved from Stage C to D? What force would oppose or favor the system moving from Stage C to D? Check all that apply. 1 absorbed O released neither absorbed nor released. none O ionic bonding force covalent bonding force…
In a system with an anodic overpotential, the variation of ŋ as a function of the current density: 1. at low fields is linear 2. at higher fields, it follows Tafel's law Find the range of current densities for which the overpotential has the same value as when calculated for cases 1 and 2 (maximum relative difference of 5% with respect to the behavior for higher fields). To which overpotential range does this correspond? Data: 10 = 1.5 mA cm², T = 300°C, ẞ = 0.64, R = 8.314 J K 1 mol‍¹ and F = 96485 C mol-1.
Indicate 10.6 with only one significant figure.

Chapter 25 Solutions

EBK GENERAL, ORGANIC, AND BIOLOGICAL CH

Ch. 25.3 - Prob. 3QQCh. 25.4 - Prob. 1QQCh. 25.4 - Prob. 2QQCh. 25.4 - Prob. 3QQCh. 25.4 - Prob. 4QQCh. 25.4 - Prob. 5QQCh. 25.4 - Prob. 6QQCh. 25.5 - Prob. 1QQCh. 25.5 - Prob. 2QQCh. 25.5 - Prob. 3QQCh. 25.6 - Prob. 1QQCh. 25.6 - Prob. 2QQCh. 25.6 - Prob. 3QQCh. 25.6 - Prob. 4QQCh. 25.6 - Prob. 5QQCh. 25.6 - Prob. 6QQCh. 25.7 - Prob. 1QQCh. 25.7 - Prob. 2QQCh. 25.7 - Prob. 3QQCh. 25.7 - Prob. 4QQCh. 25.7 - The reducing agent needed in the process of...Ch. 25.7 - Prob. 6QQCh. 25.8 - Prob. 1QQCh. 25.8 - Prob. 2QQCh. 25.9 - Prob. 1QQCh. 25.9 - Prob. 2QQCh. 25.9 - Prob. 3QQCh. 25.9 - Prob. 4QQCh. 25.10 - Which of the following substances cannot be...Ch. 25.10 - Prob. 2QQCh. 25.10 - Which of the following processes occurs within the...Ch. 25.11 - Prob. 1QQCh. 25.11 - Prob. 2QQCh. 25.11 - Prob. 3QQCh. 25 - Indicate whether each of the following aspects of...Ch. 25 - Indicate whether each of the following aspects of...Ch. 25 - Indicate whether each of the following pairings of...Ch. 25 - Prob. 25.4EPCh. 25 - Indicate whether each of the following statements...Ch. 25 - Prob. 25.6EPCh. 25 - Prob. 25.7EPCh. 25 - What is a chylomicron?Ch. 25 - What are the products of the complete hydrolysis...Ch. 25 - What are the major products of the incomplete...Ch. 25 - Prob. 25.11EPCh. 25 - At what location are free fatty acids and...Ch. 25 - Prob. 25.13EPCh. 25 - Prob. 25.14EPCh. 25 - Prob. 25.15EPCh. 25 - Prob. 25.16EPCh. 25 - Prob. 25.17EPCh. 25 - Prob. 25.18EPCh. 25 - Prob. 25.19EPCh. 25 - Prob. 25.20EPCh. 25 - Prob. 25.21EPCh. 25 - Prob. 25.22EPCh. 25 - Prob. 25.23EPCh. 25 - Prob. 25.24EPCh. 25 - Prob. 25.25EPCh. 25 - Prob. 25.26EPCh. 25 - Prob. 25.27EPCh. 25 - Identify the oxidizing agent needed in Step 3 of a...Ch. 25 - Prob. 25.29EPCh. 25 - Prob. 25.30EPCh. 25 - Prob. 25.31EPCh. 25 - Prob. 25.32EPCh. 25 - Prob. 25.33EPCh. 25 - Prob. 25.34EPCh. 25 - Prob. 25.35EPCh. 25 - Prob. 25.36EPCh. 25 - Prob. 25.37EPCh. 25 - Prob. 25.38EPCh. 25 - Prob. 25.39EPCh. 25 - Prob. 25.40EPCh. 25 - Prob. 25.41EPCh. 25 - Prob. 25.42EPCh. 25 - How many turns of the -oxidation pathway would be...Ch. 25 - How many turns of the -oxidation pathway would be...Ch. 25 - Prob. 25.45EPCh. 25 - Prob. 25.46EPCh. 25 - Prob. 25.47EPCh. 25 - Prob. 25.48EPCh. 25 - Prob. 25.49EPCh. 25 - Explain why fatty acids cannot serve as fuel for...Ch. 25 - Prob. 25.51EPCh. 25 - Prob. 25.52EPCh. 25 - Prob. 25.53EPCh. 25 - Prob. 25.54EPCh. 25 - Prob. 25.55EPCh. 25 - Prob. 25.56EPCh. 25 - Prob. 25.57EPCh. 25 - Prob. 25.58EPCh. 25 - Prob. 25.59EPCh. 25 - Prob. 25.60EPCh. 25 - Prob. 25.61EPCh. 25 - Why does a deficiency of carbohydrates in the diet...Ch. 25 - Prob. 25.63EPCh. 25 - Prob. 25.64EPCh. 25 - Prob. 25.65EPCh. 25 - Prob. 25.66EPCh. 25 - Prob. 25.67EPCh. 25 - Prob. 25.68EPCh. 25 - Prob. 25.69EPCh. 25 - Prob. 25.70EPCh. 25 - Prob. 25.71EPCh. 25 - Prob. 25.72EPCh. 25 - Prob. 25.73EPCh. 25 - Prob. 25.74EPCh. 25 - Prob. 25.75EPCh. 25 - Severe ketosis situations produce acidosis....Ch. 25 - Prob. 25.77EPCh. 25 - Prob. 25.78EPCh. 25 - Prob. 25.79EPCh. 25 - Prob. 25.80EPCh. 25 - Prob. 25.81EPCh. 25 - Prob. 25.82EPCh. 25 - Prob. 25.83EPCh. 25 - Prob. 25.84EPCh. 25 - Prob. 25.85EPCh. 25 - Prob. 25.86EPCh. 25 - Prob. 25.87EPCh. 25 - Prob. 25.88EPCh. 25 - Prob. 25.89EPCh. 25 - Prob. 25.90EPCh. 25 - Prob. 25.91EPCh. 25 - Prob. 25.92EPCh. 25 - Prob. 25.93EPCh. 25 - Prob. 25.94EPCh. 25 - What role does molecular oxygen, O2, play in fatty...Ch. 25 - Prob. 25.96EPCh. 25 - Prob. 25.97EPCh. 25 - Prob. 25.98EPCh. 25 - Prob. 25.99EPCh. 25 - Prob. 25.100EPCh. 25 - Prob. 25.101EPCh. 25 - Prob. 25.102EPCh. 25 - Prob. 25.103EPCh. 25 - Prob. 25.104EPCh. 25 - Prob. 25.105EPCh. 25 - Prob. 25.106EPCh. 25 - Prob. 25.107EPCh. 25 - Prob. 25.108EPCh. 25 - Prob. 25.109EPCh. 25 - Prob. 25.110EPCh. 25 - Prob. 25.111EPCh. 25 - Prob. 25.112EPCh. 25 - Prob. 25.113EPCh. 25 - Prob. 25.114EP
Knowledge Booster
Background pattern image
Biology
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Chemistry In Focus
Chemistry
ISBN:9781337399692
Author:Tro, Nivaldo J.
Publisher:Cengage Learning,