DATA An external resistor R is connected between the terminals of a battery. The value of R varies. For each R value, the current I in the circuit and the terminal voltage Vab of the battery are measured. The results are plotted in Fig. F25.74, a graph of Vab versus I that shows the best straight-line fit to the data, (a) Use the graph in Fig. P25.74 to calculate the battery’s emf and internal resistance, (b) For what value of R is Vab equal to 80.0% of the battery emf?
Figure P25.74
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
College Physics (10th Edition)
Physics for Scientists and Engineers with Modern Physics
The Cosmic Perspective Fundamentals (2nd Edition)
University Physics (14th Edition)
Conceptual Physics (12th Edition)
An Introduction to Thermal Physics
- A capacitor with initial charge Q0 is connected across a resistor R at time t = 0. The separation between the plates of the capacitor changes as d = d0/(1 + t) for 0 t 1 s. Find an expression for the voltage drop across the capacitor as a function of time.arrow_forwardThe circuit shown in Figure P28.78 is set up in the laboratory to measure an unknown capacitance C in series with a resistance R = 10.0 M powered by a battery whose emf is 6.19 V. The data given in the table are the measured voltages across the capacitor as a function of lime, where t = 0 represents the instant at which the switch is thrown to position b. (a) Construct a graph of In (/v) versus I and perform a linear least-squares fit to the data, (b) From the slope of your graph, obtain a value for the time constant of the circuit and a value for the capacitance. v(V) t(s) In (/v) 6.19 0 5.56 4.87 4.93 11.1 4.34 19.4 3.72 30.8 3.09 46.6 2.47 67.3 1.83 102.2arrow_forwardIn Figure P29.81, N real batteries, each with an emf and internal resistance r, are connected in a closed ring. A resistor R can be connected across any two points of this ring, causing there to be n real batteries in one branch and N n resistors in the other branch. Find an expression for the current through the resistor R in this case.arrow_forward
- Consider a series RC circuit as in Figure P28.38 for which R = 1.00 M, C = 5.00 F, and = 30.0 V. Find (a) the time constant of the circuit and (b) the maximum charge on the capacitor after the switch is thrown closed. (c) Find the current in the resistor 10.0 s after the switch is closed.arrow_forwardEach resistor shown in Figure P29.36 has a resistance of 100.0 . An ideal emf device (120.0 V) is connected to points a and b via two leads (not shown in the figure). Find the current that flows through the emf device.arrow_forwardThree resistors with resistances R1 = R/2 and R2 = R3 = R are connected as shown, and a potential difference of 225 V is applied across terminals a and b (Fig. P29.49). a. If the resistor R1 dissipates 75.0 W of power, what is the value of R? b. What is the total power supplied to the circuit by the emf? c. What is the potential difference across each of the three resistors?arrow_forward
- A student makes a homemade resistor from a graphite pencil 5.00 cm long, where the graphite is 0.05 mm indiameter. The resistivity of the graphite is =1.38102/m . The homemade resistor is place inseries with a switch, a 10.00-mF capacitor and a 0.50-V power source, (a) What is the BC time constant of the circuit? (b) What is the potential drop across the pencil 1.00 s after the switch is closed?arrow_forwardThe student engineer of a campus radio station wishes to verify the effectiveness of the lightning rod on the antenna mast (Fig. P27.49). The unknown resistance Rx is between points C and E. Point E is a true ground, but it is inaccessible for direct measurement because this stratum is several meters below the Earths surface. Two identical rods are driven into the ground at A and B, introducing an unknown resistance Ry. The procedure is as follows. Measure resistance R1 between points A and B, then connect A and B with a heavy conducting wire and measure resistance R2 between points A and C. (a) Derive an equation for Rx in terms of the observable resistances, R1, and R2. (b) A satisfactory ground resistance would Rx 2.00 . Is the grounding of the station adequate if measurements give R1 = 13.0 and R2 = 6.00 ? Explain. Figure P27.49arrow_forwardE12P2arrow_forward
- A charged capacitor is connected to a resistor and a switch as in the figure below. The circuit has a time constant of 1.30 s. Soon after the switch is closed, the charge on the capacitor is 69.0% of its initial charge. S +Q C R (a) Find the time interval required for the capacitor to reach this charge. S (b) If R = 220 k2, what is the value of C? C = µFarrow_forwardIn Figure P28.67, suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. (E = 8.50 V, r1 = 10 kN, and r2 = 16 kN.) 10.0 µF 3.00 k2 Figure P28.67 (a) Find the steady-state current in each resistor. I1 = 1.32 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. µA I2 = 4.32 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. µA I3-ko = 0 HA (b) Find the charge Q on the capacitor. 8.83 Your response differs from the correct answer by more than 10%. Double check your calculations. µC (c) The switch is opened at t = 0. Write an equation for the current IR, in R, as a function of time. O (327 µA)e-t/(0.190 s) O (275 µA)et/(0.190 s) O (275 µA)e-t/(0.190 s) O (327 µA)et/(0.190 s) (d) Find the time that it takes for the charge on the capacitor to fall to one-fifth its initial…arrow_forwardRC Circuits: In this circuit, the battery has voltage E = 2.0 V, and each resistor has resistance R = 10 Q. The capacitor, which has capacitance C = 1.0 x10-12 F, carries. initial charge 3.0 x 10-12 C, with the positive charge on the right plate. The switch is closed at time t = 0 s. a. Immediately after time t = 0, what current flows through resistor 1? b. A long time later, what current flows through resistor 1? c. Sketch a rough graph of the charge on the right capacitor plate, as a function of time. દ 8. ww C R 2 R3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning