Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 8P
(II) If
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule03:51
Students have asked these similar questions
this is tricky because x is attracting both Y and Z
1)What is the electric potential due to the nucleus of hydrogen at a distance of 6.50×10-11 m? Assume the potential is equal to zero as r→∞. (Express your answer to three significant figures.)
(I) An electron and a proton are 0.53 x 10-10m apart. What is their dipole moment if they are at rest?
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 8.2 - By how much does the potential energy change when...Ch. 8.4 - In Example 83, what is the rock's speed just...Ch. 8.4 - Two balls are released from the same height above...Ch. 8 - List some everyday forces that are not...Ch. 8 - You lift a heavy book from a table to a high...Ch. 8 - The net force acting on a particle is conservative...Ch. 8 - When a superball is dropped, can it rebound to a...Ch. 8 - A hill has a height h. A child on a sled (total...Ch. 8 - Why is it tiring to push hard against a solid wall...Ch. 8 - Analyze the motion of a simple swinging pendulum...
Ch. 8 - In Mg. 825, water balloons are tossed from the...Ch. 8 - A coil spring of mass m rests upright on a table....Ch. 8 - What happens to the gravitational potential energy...Ch. 8 - Experienced hikers prefer to step over a fallen...Ch. 8 - (a) Where does the kinetic energy come from when a...Ch. 8 - The Earth is closest to the Sun in winter...Ch. 8 - Can the total mechanical energy E=K+Uever be...Ch. 8 - Suppose that you wish to launch a rocket from the...Ch. 8 - Recall from Chapter 4, Example 414, that you can...Ch. 8 - Two identical arrows, one with twice the speed of...Ch. 8 - A bowling ball is hung from the ceiling by a steel...Ch. 8 - A pendulum is launched from a point that is a...Ch. 8 - Describe the energy transformations when a child...Ch. 8 - Describe the energy transformations that take...Ch. 8 - Suppose you lift a suitcase from the floor to a...Ch. 8 - Repeat Question 23 for the power needed instead of...Ch. 8 - Why is it easier to climb a mountain via a zigzag...Ch. 8 - Figure 829 shows a potential energy curve, U(x)....Ch. 8 - (a) Describe in detail the velocity changes of a...Ch. 8 - Name the type of equilibrium for each position of...Ch. 8 - (I) A spring has a spring constant k of 82.0 N/m....Ch. 8 - (I) A 6.0-kg monkey swings from one branch to...Ch. 8 - (II) A spring with k = 63 N/m hangs vertically...Ch. 8 - (II) A 56.5-kg hiker starts at an elevation of...Ch. 8 - (II) A 1.60-m tall person lifts a 1.95-kg book off...Ch. 8 - (II) A 1200-kg car rolling on a horizontal surface...Ch. 8 - (II) A particular spring obeys the force law F =...Ch. 8 - (II) If U=3x2+2xy+4y2z, what is the force, F?Ch. 8 - (II) A particle is constrained to move in one...Ch. 8 - (II) A particle constrained to move in one...Ch. 8 - (I) A novice skier, starting from rest, slides...Ch. 8 - (I) Jane, looking for Tarzan, is running at top...Ch. 8 - (II) In the high jump, the kinetic energy of an...Ch. 8 - (II) A sled is initially given a shove up a...Ch. 8 - (II) A 55-kg bungee jumper leaps from a bridge....Ch. 8 - (II) A 72-kg trampoline artist jumps vertically...Ch. 8 - The total energy E of an object of mass m that...Ch. 8 - (II) A 0.40-kg hall is thrown with a speed of 8.5...Ch. 8 - (II) A vertical spring (ignore its mass), whose...Ch. 8 - (II) A roller-coaster car shown in Fig. 832 is...Ch. 8 - (II) When a mass m sits at rest on a spring, the...Ch. 8 - (II) Two masses are connected by a string as shown...Ch. 8 - (II) A block of mass m is attached to the end of a...Ch. 8 - (II) A cyclist intends to cycle up a 9.50 hill...Ch. 8 - (II) A pendulum 2.00 m long is released (from...Ch. 8 - (II) What should be the spring constant k of a...Ch. 8 - (III) An engineer is designing a spring to be...Ch. 8 - (III) A skier of mass m starts from rest at the...Ch. 8 - (I) Two railroad cars, each of mass 56,000 kg, are...Ch. 8 - (I) A 16.0-kg child descends a slide 2.20 m high...Ch. 8 - (II) A ski starts from rest and slides down a 28...Ch. 8 - (II) A 145-g baseball is dropped from a tree 14.0...Ch. 8 - (II) A 96-kg crate, starling from rest, is pulled...Ch. 8 - (II) Suppose the roller-coaster ear in Fig. 832...Ch. 8 - (II) A skier traveling 9.0 m/s reaches the fool of...Ch. 8 - (II) Consider the track shown in Fig. 837. The...Ch. 8 - (II) A 0.620-kg wood block is firmly attached to a...Ch. 8 - (II) A 180-g wood block is firmly attached to a...Ch. 8 - (II) You drop a ball from a height of 2.0 m, and...Ch. 8 - (II) A 56-kg skier starts from rest at the top of...Ch. 8 - (II) How much does your gravitational energy...Ch. 8 - (III) A spring (k = 75 N/m) has an equilibrium...Ch. 8 - (III) A 2.0-kg block slides along a horizontal...Ch. 8 - (III) Early lest flights for the space shuttle...Ch. 8 - (I) For a satellite of mass mS in a circular orbit...Ch. 8 - (I) Jill and her friends have built a small rocket...Ch. 8 - Prob. 47PCh. 8 - (II) Show that Eq. 816 for gravitational potential...Ch. 8 - (II) Determine the escape velocity from the Sun...Ch. 8 - (II) Two Earth satellites, A and B, each of mass m...Ch. 8 - (II) Show that the escape velocity for any...Ch. 8 - (II) (a) Show that the total mechanical energy of...Ch. 8 - (II) Take into account the Earths rotational speed...Ch. 8 - (II) (a) Determine a formula for the maximum...Ch. 8 - Prob. 55PCh. 8 - (II) A meteorite has a speed of 90.0 m/s when 850...Ch. 8 - (II) How much work would be required to move a...Ch. 8 - (II) (a) Suppose we have three masses, m1, m2, and...Ch. 8 - (II) A NASA satellite has just observed an...Ch. 8 - (II) A sphere of radius r1 has a concentric...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - (I) If a car generates 18 hp when traveling at a...Ch. 8 - (I) An 85-kg football player traveling 5.0 m/s is...Ch. 8 - (II) A driver notices that her 1080-kg car slows...Ch. 8 - (II) How much work can a 3.0-hp motor do in 1.0 h?Ch. 8 - (II) An outboard motor for a boat is rated at 55...Ch. 8 - (II) A 1400-kg sports car accelerates from rest to...Ch. 8 - (II) During a workout, football players ran up the...Ch. 8 - (II) A pump lifts 21.0 kg of water per minute...Ch. 8 - (II) A ski area claims that its lifts can move...Ch. 8 - (II) A 75-kg skier grips a moving rope that is...Ch. 8 - (III) The position of a 280-g object is given (in...Ch. 8 - (III) A bicyclist coasts clown a 6.0 hill at a...Ch. 8 - Draw a potential energy diagram, U vs. x, and...Ch. 8 - (II) The spring of Problem 75 has a stiffness...Ch. 8 - (III) The potential energy of the two atoms in a...Ch. 8 - (III) The binding energy of a two-particle system...Ch. 8 - What is the average power output of an elevator...Ch. 8 - A projectile is fired at an upward angle of 48.0...Ch. 8 - Water flows over a clam at the rate of 580kg/s and...Ch. 8 - A bicyclist of mass 75 kg (including the bicycle)...Ch. 8 - A 62-kg skier starts from rest at the top of a ski...Ch. 8 - Repeat Problem 83, but now assume the ski jump...Ch. 8 - A ball is attached to a horizontal cord of length ...Ch. 8 - Show the h must be greater than 0.60 if the ball...Ch. 8 - Show that on a roller coaster with a circular...Ch. 8 - If you stand on a bathroom scale, the spring...Ch. 8 - A 65-kg hiker climbs to the top of a 4200-m-high...Ch. 8 - The small mass m sliding without friction along...Ch. 8 - A 56-kg student runs at 5.0 m/s, grabs a hanging...Ch. 8 - The nuclear force between two neutrons in a...Ch. 8 - A fire hose for use in urban areas must be able to...Ch. 8 - A 16-kg sled starts up a 28 incline with a speed...Ch. 8 - The Lunar Module could make a safe landing if its...Ch. 8 - Proper design of automobile braking systems must...Ch. 8 - Some electric power companies use water to store...Ch. 8 - Estimate the energy required from fuel to launch a...Ch. 8 - Prob. 99GPCh. 8 - Suppose the gravitational potential energy of an...Ch. 8 - (a) If the human body could convert a candy bar...Ch. 8 - Electric energy units are often expressed in the...Ch. 8 - Chris jumps off a bridge with a bungee cord (a...Ch. 8 - In a common test for cardiac function (the stress...Ch. 8 - (a) If a volcano spews a 450-kg rock vertically...Ch. 8 - A film of Jesse Owenss famous long jump (Fig. 849)...Ch. 8 - An elevator cable breaks when a 920-kg elevator is...Ch. 8 - A particle moves where its potential energy is...Ch. 8 - A particle of mass m moves under the influence of...Ch. 8 - Prob. 110GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Kinetic energy from the car’s motion.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
The volume of a sphere is given by V=43r3, where r is the spheres radius. For solid spheres with the same densi...
Essential University Physics (3rd Edition)
21. What is the underlying cause of air motion?
Conceptual Physical Science (6th Edition)
Compare the momentum changes needed to boost a spacecraft (a) from 0.10c to 0.20c and (b) from 0.80c to 0.90c.
Essential University Physics: Volume 2 (3rd Edition)
A friend says, “It makes no sense that Anna could turn on lights in her hands simultaneously in her frame but t...
Modern Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two charged point particles both of mass m = 1 g and q = 1 µC are on a horizontal surface without friction with each other by means of a spring of elastic constant k = 0.2 N / m, at rest it is negligible. Is requested a) Find the length of the spring for which the master is in equilibrium b) Calculate the energy that is needed to stretch the spring from the length it has when the system is in equilibrium until it is one meter c) From this last position in which the distance between the charges is one meter and starting from rest, the charges are allowed to move, would they come closer to each other until the distance that separates them is 10 cm? if they don't explain why. If they do find the velocity of the charges when they reach that distance.arrow_forwardHow much work is required to bring three protons, initially infinitely far apart, to a configuration where each proton is 1.68E-15 m from the other two. (This is a typical separation for protons in a nucleus.)arrow_forwardneat sol as soonarrow_forward
- 3 (a) Suppose a dielectric sample has a surrounding ambient temperature To which is lower than 300 K. What will be its impact on Ec (increase or decrease)? If the value of Ec needs to be restricted, how you will choose the impulse time to (increase or decrease)? Explain. (b) For a porcelain solid slab dielectric insulator, Cv = 1.16 kJ/kg °K, u =0.25 eV, 0o = 2.45 W/m °K and To = 420 K. For te = 3.35 us, what is the value of critical breakdown field Eei? (c) If the specimen thickness is 5.48 cm, what is the breakdown voltage Vb1? (d) Now consider for the same porcelain slab of 3(b), To is now 220 K and all other parameters are unchanged. What is the value of new critical breakdown field Ec2 ? (e) For the same specimen thickness of 3(c), what is the new breakdown voltage Vb2 ? What is the ratio Vb2/ Vb1 ? u E.? = 3 (오) () 7.? exo Cy 2 Earrow_forward(3) Two protons are initially both traveling with velocity i = -1.91 x 10°m/sj while sepa- rated by a distance of 54.8fm. While these protons interact, they will begin to move away from one another and end up infinitely far away from one another. (a) Draw a picture of the protons in their initial state. Label the separation and the velocity on the image. Be sure to include a labeled set of axes. (b) What is the closest separation between these protons during their motion? (c) When the protons are infinitely far apart, one will have a speed which is 4.53 times larger than the other proton. What are the final velocities of these protons? (d) Draw a picture of the protons in their final state. Use the same orientation of axes from part (a). Label the velocities on the image.arrow_forward(d) Use R proton.) R = v²sin(208) 9 to write an expression for R in terms of v, E, the charge and mass of the proton, and the angle 6. (Use the following as necessary: v, e, E, 6, and m, for the mass of (e) Find the two possible values of the angle (in degrees). (Enter your answers from smallest to largest.) (r) Find the time interval during which the proton is above the plane in the figure above for each of the two possible values of @ (in degrees). (Enter your answers from smallest to largest.) ns nsarrow_forward
- Q1 = -0.10 µC is located at the origin. Q2 = +0.10 µC is located on the positive x axis at x = 1.0 m. Which of the following is true of the force on Q, due to Q2? (a) It is attractive and directed in the +x direction. (b) It is attractive and directed in the -x direction. (c) It is repulsive and directed in the +x direction. (d) It is repulsive and directed in the –x direction.arrow_forward8) The nucleus of a silver atom has a charge +47 e and is fixed at the origin of a cartesian coordinate system. An alpha particle of mass 6.68 × 10^−27 kg and charge +4 e is fired along the x-axis from infinity with an initial kinetic energy of 7.00 × 10^−13 J. At what distance from the silver nucleus will the alpha particle come (momentarily) to rest?arrow_forwardWith what initial speed should a positive charge, +q, of mass mbegiven such that if starting infinitely far away from a fixed positively charged nucleus, +Q,of radius R, the positive charge is justable to get the surface of the positive charge. You should be able to do the problem using energy with a system just being the approaching charge and then the system being both chargesarrow_forward
- CSM.10 One way to measure nuclear radii is to determine the initial speed that a proton fired at a nucleus must have to be absorbed. Suppose you fire a proton directly at the nucleus of a gold atom, which contains 79 protons and neutrons. Since both the proton and the gold nucleus are positively charged, they will repel each other electrostati cally. What must the proton's minimum initial speed (as a fraction of the speed of light) be if it is to penetrate that nucleus (whose radius is R 6 fm)? (a) Give your answer symbolically in terms of R, the Cou- lomb constant 1/4TEo, the speed of light c, the charge on the proton q, and the proton's mass m. (b) What is this fraction's numerical value? (Hints: What must the proton's speed be at its point of closest approach if the collision is head-on and it barely touches the nucleus? Note also that the particles' initial separation will be essentially infinite compared to 6 fm. Neutrons have no charge, so the charge of a gold nucleus will be 79…arrow_forward1) What is the electric potential due to the nucleus of hydrogen at a distance of 8.50×10-11 m? Assume the potential is equal to zero as r→ ∞. (Express your answer to three significant figures.) Submit Varrow_forward1) Given that the electric field in a certain region is E = (z + 1)sin (4)u, + (z + 1)cos($)Ug + psin(4)u, (V/m) determine the work done in moving a 4 nC charge from A(1,0,0) to D(4,30°,–2).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY