Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 55P
(a)
To determine
The rate at which escape velocity changes with respect to the distance from the Earth.
(b)
To determine
The escape velocity of a spacecraft which is at a height of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
c) i) Relative to the sun, calculate the minimum speed for a spacecraft to escape the solar system if it starts at the Earth’s orbit.(Given M sun = 1.989 x 10 ^30 kg, distance from Earth to Sun = 1.5 x 10^11 km)
ii) Voyager 1 achieved a maximum speed of 125000 km/h on its way to photograph Jupiter. Calculate the distance from the Sun for this speed sufficient to escape the solar system.
(a) Evaluate the gravitational potential energy (in J) between two 4.00 kg spherical steel balls separated by a center-to-center distance of 27.0 cm.
(b) Assuming that they are both initially at rest relative to each other in deep space, use conservation of energy to find how fast (in m/s) will they each be traveling upon impact. Each
sphere has a radius of 5.50 cm.
m/s
(a) Calculate how much work is required to launch a spacecraft of mass m from the surface of the earth (mass mE, radius RE) and place it in a circular low earth orbit—that is, an orbit whose altitude above the earth’s surface is much less than RE. (As an example, the International Space Station is in low earth orbit at an altitude of about 400 km, much less than RE = 6370 km.) Ignore the kinetic energy that the spacecraft has on the ground due to the earth’s rotation. (b) Calculate the minimum amount of additional work required to move the spacecraft from low earth orbit to a very great distance from the earth. Ignore the gravitational effects of the sun, the moon, and the other planets. (c) Justify the statement “In terms of energy, low earth orbit is halfway to the edge of the universe.”
Chapter 8 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 8.2 - By how much does the potential energy change when...Ch. 8.4 - In Example 83, what is the rock's speed just...Ch. 8.4 - Two balls are released from the same height above...Ch. 8 - List some everyday forces that are not...Ch. 8 - You lift a heavy book from a table to a high...Ch. 8 - The net force acting on a particle is conservative...Ch. 8 - When a superball is dropped, can it rebound to a...Ch. 8 - A hill has a height h. A child on a sled (total...Ch. 8 - Why is it tiring to push hard against a solid wall...Ch. 8 - Analyze the motion of a simple swinging pendulum...
Ch. 8 - In Mg. 825, water balloons are tossed from the...Ch. 8 - A coil spring of mass m rests upright on a table....Ch. 8 - What happens to the gravitational potential energy...Ch. 8 - Experienced hikers prefer to step over a fallen...Ch. 8 - (a) Where does the kinetic energy come from when a...Ch. 8 - The Earth is closest to the Sun in winter...Ch. 8 - Can the total mechanical energy E=K+Uever be...Ch. 8 - Suppose that you wish to launch a rocket from the...Ch. 8 - Recall from Chapter 4, Example 414, that you can...Ch. 8 - Two identical arrows, one with twice the speed of...Ch. 8 - A bowling ball is hung from the ceiling by a steel...Ch. 8 - A pendulum is launched from a point that is a...Ch. 8 - Describe the energy transformations when a child...Ch. 8 - Describe the energy transformations that take...Ch. 8 - Suppose you lift a suitcase from the floor to a...Ch. 8 - Repeat Question 23 for the power needed instead of...Ch. 8 - Why is it easier to climb a mountain via a zigzag...Ch. 8 - Figure 829 shows a potential energy curve, U(x)....Ch. 8 - (a) Describe in detail the velocity changes of a...Ch. 8 - Name the type of equilibrium for each position of...Ch. 8 - (I) A spring has a spring constant k of 82.0 N/m....Ch. 8 - (I) A 6.0-kg monkey swings from one branch to...Ch. 8 - (II) A spring with k = 63 N/m hangs vertically...Ch. 8 - (II) A 56.5-kg hiker starts at an elevation of...Ch. 8 - (II) A 1.60-m tall person lifts a 1.95-kg book off...Ch. 8 - (II) A 1200-kg car rolling on a horizontal surface...Ch. 8 - (II) A particular spring obeys the force law F =...Ch. 8 - (II) If U=3x2+2xy+4y2z, what is the force, F?Ch. 8 - (II) A particle is constrained to move in one...Ch. 8 - (II) A particle constrained to move in one...Ch. 8 - (I) A novice skier, starting from rest, slides...Ch. 8 - (I) Jane, looking for Tarzan, is running at top...Ch. 8 - (II) In the high jump, the kinetic energy of an...Ch. 8 - (II) A sled is initially given a shove up a...Ch. 8 - (II) A 55-kg bungee jumper leaps from a bridge....Ch. 8 - (II) A 72-kg trampoline artist jumps vertically...Ch. 8 - The total energy E of an object of mass m that...Ch. 8 - (II) A 0.40-kg hall is thrown with a speed of 8.5...Ch. 8 - (II) A vertical spring (ignore its mass), whose...Ch. 8 - (II) A roller-coaster car shown in Fig. 832 is...Ch. 8 - (II) When a mass m sits at rest on a spring, the...Ch. 8 - (II) Two masses are connected by a string as shown...Ch. 8 - (II) A block of mass m is attached to the end of a...Ch. 8 - (II) A cyclist intends to cycle up a 9.50 hill...Ch. 8 - (II) A pendulum 2.00 m long is released (from...Ch. 8 - (II) What should be the spring constant k of a...Ch. 8 - (III) An engineer is designing a spring to be...Ch. 8 - (III) A skier of mass m starts from rest at the...Ch. 8 - (I) Two railroad cars, each of mass 56,000 kg, are...Ch. 8 - (I) A 16.0-kg child descends a slide 2.20 m high...Ch. 8 - (II) A ski starts from rest and slides down a 28...Ch. 8 - (II) A 145-g baseball is dropped from a tree 14.0...Ch. 8 - (II) A 96-kg crate, starling from rest, is pulled...Ch. 8 - (II) Suppose the roller-coaster ear in Fig. 832...Ch. 8 - (II) A skier traveling 9.0 m/s reaches the fool of...Ch. 8 - (II) Consider the track shown in Fig. 837. The...Ch. 8 - (II) A 0.620-kg wood block is firmly attached to a...Ch. 8 - (II) A 180-g wood block is firmly attached to a...Ch. 8 - (II) You drop a ball from a height of 2.0 m, and...Ch. 8 - (II) A 56-kg skier starts from rest at the top of...Ch. 8 - (II) How much does your gravitational energy...Ch. 8 - (III) A spring (k = 75 N/m) has an equilibrium...Ch. 8 - (III) A 2.0-kg block slides along a horizontal...Ch. 8 - (III) Early lest flights for the space shuttle...Ch. 8 - (I) For a satellite of mass mS in a circular orbit...Ch. 8 - (I) Jill and her friends have built a small rocket...Ch. 8 - Prob. 47PCh. 8 - (II) Show that Eq. 816 for gravitational potential...Ch. 8 - (II) Determine the escape velocity from the Sun...Ch. 8 - (II) Two Earth satellites, A and B, each of mass m...Ch. 8 - (II) Show that the escape velocity for any...Ch. 8 - (II) (a) Show that the total mechanical energy of...Ch. 8 - (II) Take into account the Earths rotational speed...Ch. 8 - (II) (a) Determine a formula for the maximum...Ch. 8 - Prob. 55PCh. 8 - (II) A meteorite has a speed of 90.0 m/s when 850...Ch. 8 - (II) How much work would be required to move a...Ch. 8 - (II) (a) Suppose we have three masses, m1, m2, and...Ch. 8 - (II) A NASA satellite has just observed an...Ch. 8 - (II) A sphere of radius r1 has a concentric...Ch. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - (I) If a car generates 18 hp when traveling at a...Ch. 8 - (I) An 85-kg football player traveling 5.0 m/s is...Ch. 8 - (II) A driver notices that her 1080-kg car slows...Ch. 8 - (II) How much work can a 3.0-hp motor do in 1.0 h?Ch. 8 - (II) An outboard motor for a boat is rated at 55...Ch. 8 - (II) A 1400-kg sports car accelerates from rest to...Ch. 8 - (II) During a workout, football players ran up the...Ch. 8 - (II) A pump lifts 21.0 kg of water per minute...Ch. 8 - (II) A ski area claims that its lifts can move...Ch. 8 - (II) A 75-kg skier grips a moving rope that is...Ch. 8 - (III) The position of a 280-g object is given (in...Ch. 8 - (III) A bicyclist coasts clown a 6.0 hill at a...Ch. 8 - Draw a potential energy diagram, U vs. x, and...Ch. 8 - (II) The spring of Problem 75 has a stiffness...Ch. 8 - (III) The potential energy of the two atoms in a...Ch. 8 - (III) The binding energy of a two-particle system...Ch. 8 - What is the average power output of an elevator...Ch. 8 - A projectile is fired at an upward angle of 48.0...Ch. 8 - Water flows over a clam at the rate of 580kg/s and...Ch. 8 - A bicyclist of mass 75 kg (including the bicycle)...Ch. 8 - A 62-kg skier starts from rest at the top of a ski...Ch. 8 - Repeat Problem 83, but now assume the ski jump...Ch. 8 - A ball is attached to a horizontal cord of length ...Ch. 8 - Show the h must be greater than 0.60 if the ball...Ch. 8 - Show that on a roller coaster with a circular...Ch. 8 - If you stand on a bathroom scale, the spring...Ch. 8 - A 65-kg hiker climbs to the top of a 4200-m-high...Ch. 8 - The small mass m sliding without friction along...Ch. 8 - A 56-kg student runs at 5.0 m/s, grabs a hanging...Ch. 8 - The nuclear force between two neutrons in a...Ch. 8 - A fire hose for use in urban areas must be able to...Ch. 8 - A 16-kg sled starts up a 28 incline with a speed...Ch. 8 - The Lunar Module could make a safe landing if its...Ch. 8 - Proper design of automobile braking systems must...Ch. 8 - Some electric power companies use water to store...Ch. 8 - Estimate the energy required from fuel to launch a...Ch. 8 - Prob. 99GPCh. 8 - Suppose the gravitational potential energy of an...Ch. 8 - (a) If the human body could convert a candy bar...Ch. 8 - Electric energy units are often expressed in the...Ch. 8 - Chris jumps off a bridge with a bungee cord (a...Ch. 8 - In a common test for cardiac function (the stress...Ch. 8 - (a) If a volcano spews a 450-kg rock vertically...Ch. 8 - A film of Jesse Owenss famous long jump (Fig. 849)...Ch. 8 - An elevator cable breaks when a 920-kg elevator is...Ch. 8 - A particle moves where its potential energy is...Ch. 8 - A particle of mass m moves under the influence of...Ch. 8 - Prob. 110GP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An average-sized asteroid located 5.0107km from Earth with mass 2.01013kg is detected headed directly toward Earth with speed of 2.0km/s . What will its speed be just before it hits our atmosphere? (You may ignore the size of the asteroid.)arrow_forwardFind the speed needed to escape from the solar system starting from the surface of Earth. Assume there are no other bodies involved and do not account for the fact that Earth is moving in its orbit. [Hint: Equation 13.6 does not apply. Use Equation 13.5 and include the potential energy of both Earth and the Sun. Substituting the values for Earth’s mass and radius directly into Equation 13.6, we obtain vesc=2GMR=2(6.67 10 11Nm2/kg2)(5.96 10 24kg)(6.37 106m)=1.12104m/s That is about 11 km/s or 25,000 mph. To escape the Sun, starting from Earth’s orbit, we use R=RES=1.501011m and MSum=1.991030kg . The result is vesc=4.21104m/s or about 42 km/s. We have 12mvesc2GMmR=12m02GMm=0 Solving for the escape velocity,arrow_forwardCompute directly the gravitational force on a unit mass at a point exterior to a homogeneous sphere of matter.arrow_forward
- Find the escape speed of a projectile from the surface of Mars.arrow_forwardIIIIIIIty (11ee nom the pull of gravity) surface of the earth An object would have to have enough kinetic energy to equal the potential energy at infinity. Ek = Epg 1/2 m v2 = G m¡m2r rearranging for v: v = /2 Gmr ex. The escape velocity at the surface of the earth is approximately 8 km/s. What is the escape velocity for a planet whose radius is 4 times and whose mass is 100 times that of earth?arrow_forwardA satellite of mass “m” is in a circular orbit of radius 1.5R around the earth of radius R. How much energy is required to move it to an orbit of radius 2R? a) -(G*M*m)/12R b) (G*M*m)/12R c) -(G*M*m)/4R d) (G*M*m)/4Rarrow_forward
- 19-77/ A satellite in a circular orbit 1000 km above Earth's surface has total mechanical energy U. Find (A) kinetic anergy, (B) mass and (C) speed. [Data: U = -1.8 GJ ; ] Post Discussion Send Feedbackarrow_forwardV:53) Using the Hohmann transfer orbit to go from a circular orbit to new circular orbit with three times the radius (with an elliptical orbit in between), is the final speed greater than or less than the initial speed in first circular orbit? By what factor does it differ?arrow_forward(c) Suppose that the Earth's mass is doubled, but its radius remains unchanged. How will this change the escape velocity? O The escape velocity will be doubled. O The escape velocity will increase by about 40 percent (i.e., it will be multiplied by v2). O The escape velocity will be halved. O The escape velocity will decrease by about 30 percent (i.e., it will be divided by 2). O The escape velocity will be unchanged. (d) Suppose that the Earth's radius is doubled, but its mass remains unchanged (i.e. R = 1.28 x 107 m and M = 5.97 x 1024 kg). How will the escape velocity be affected? O The escape velocity will be doubled. O The escape velocity will increase by about 40 percent (i.e., it will be multiplied by 2). O The escape velocity will be halved. O The escape velocity will decrease by about 30 percent (i.e., it will be divided by 2). O The escape velocity will be unchanged. (e) Suppose that the Earth's mass and radius are both doubled (i.e. R = 1.28 x 10' m and M = 1.19 x 1025 kg).…arrow_forward
- (a) Evaluate the gravitational potential energy (in J) between two 9.00 kg spherical steel balls separated by a center-to-center distance of 23.0 cm. -2.349E-8 J (b) Assuming that they are both initially at rest relative to each other in deep space, use conservation of energy to find how fast (in m/s) will they each be traveling upon impact. Each sphere has a radius of 5.50 cm. 10.90 X m/sarrow_forwardAn object of mass m is launched from a planet of mass M and radius R. a)Derive and enter an expression for the minimum launch speed needed for the object to escape gravity, i.e. to be able to just reach r = ∞. b)Calculate this minimum launch speed (called the escape speed), in meters per second, for a planet of mass M = 6 × 1023 kg and R = 76 × 104 km.arrow_forwardShow that the values vA and vP of the speed of an earth satellite at the apogee A and the perigee P of an elliptic orbit are defined by the relationswhere M is the mass of the earth, and rA and rP represent, respectively, the maximum and minimum distances of the orbit to the center of the earth.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning