
Concept explainers
(a)
Interpretation:
The lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate succinate has to be determined.
Concept introduction:
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid. This process is the reverse of the degradation of fatty acid.
The Citric acid cycle is a series of biochemical reactions that use acetyl CoA (produced by oxidation of pyruvate) to produce carbon dioxide, NADH and FADH2 in a series of
(a)

Answer to Problem 25.106EP
The lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate succinate is butyrate.
Explanation of Solution
Succinic acid is a dicarboxylic acid and has 4 carbon atoms. Thus, each intermediate of the citric acid cycle is a C4 derivative of dicarboxylic acid. The structure of succinic acid is,
Intermediates involved in the lipogenesis are derivatives of C4 molecule butyric acid. Butyric acid is a monocarboxylic acid and has 4 carbon atoms. Thus, each intermediate of the lipogenesis is a C4 derivative of monocarboxylic acid. The structure of butyric acid is,
The structure of succinate is,
The structure of butyrate is,
Butyrate and succinate are saturated acid with four carbon atoms in each molecule. butyrate is a monoacid formed as intermediate in lipogenesis while succinate is a diacid formed as intermediate in the citric acid cycle. Therefore, the lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate succinate is butyrate.
(b)
Interpretation:
The lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate malate has to be determined.
Concept introduction:
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid. This process is the reverse of the degradation of fatty acid.
The Citric acid cycle is a series of biochemical reactions that use acetyl CoA (produced by oxidation of pyruvate) to produce carbon dioxide, NADH and FADH2 in a series of redox reactions.
Intermediates involved in the lipogenesis are derivative of C4 molecule butyric acid. Butyric acid is a monocarboxylic acid and has 4 carbon atoms. Thus, each intermediate of the lipogenesis is a C4 derivative of monocarboxylic acid. The structure of butyric acid is,
Succinic acid is a dicarboxylic acid and has 4 carbon atoms. Thus, each intermediate of the citric acid cycle is a
(b)

Answer to Problem 25.106EP
The lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate malate is β-hydroxybutyrate.
Explanation of Solution
Malate is the intermediate in the citric acid cycle. The structure of malate is,
β-Hydroxybutyrate is the intermediate in the lipogenesis. The structure of β-hydroxybutyrate is,
Malate and β-hydroxybutyrate are the hydroxy derivatives of saturated acid with four carbon atoms in each molecule. Malate is a hydroxy derivative of dicarboxylic acid that is formed as the intermediate in the citric acid cycle whileβ-hydroxybutyrate is a hydroxy derivative of monocarboxylic acid that is formed as the intermediate in the lipogenesis. The lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate malate is β-hydroxybutyrate.
(c)
Interpretation:
The lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate oxaloacetate has to be determined.
Concept introduction:
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid. This process is the reverse of the degradation of fatty acid.
The Citric acid cycle is a series of biochemical reactions that use acetyl CoA (produced by oxidation of pyruvate) to produce carbon dioxide, NADH and FADH2 in a series of redox reactions.
Intermediates involved in the lipogenesis are derivatives of C4 molecule butyric acid. Butyric acid is a monocarboxylic acid and has 4 carbon atoms. Thus, each intermediate of the lipogenesis is a C4 derivative of monocarboxylic acid. The structure of butyric acid is,
Succinic acid is a dicarboxylic acid and has 4 carbon atoms. Thus, each intermediate of the citric acid cycle is a C4 derivative of dicarboxylic acid. The structure of succinic acid is,
(c)

Answer to Problem 25.106EP
The lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate oxaloacetate is acetoacetate.
Explanation of Solution
Oxaloacetate is the intermediate in the citric acid cycle. The structure of oxaloacetate is,
Acetoacetate is the intermediate in the lipogenesis. The structure of acetoacetate is,
Oxaloacetate and acetoacetate are the keto derivatives of saturated acid with four carbon atoms in each molecule. Oxaloacetate is a keto derivative of dicarboxylic acid that is formed as the intermediate in the citric acid cycle while acetoacetate is a keto derivative of monocarboxylic acid that is formed as the intermediate in the lipogenesis. Therefore, the lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate oxaloacetate is acetoacetate.
(d)
Interpretation:
The lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate fumarate has to be determined.
Concept introduction:
Lipogenesis is the process employed for the synthesis of fatty acid. The starting precursor for the synthesis is acetyl CoA. The enzyme employed for the process is fatty acid synthase. It is a multienzyme complex that ties the reaction responsible for the synthesis of fatty acid. This process is the reverse of the degradation of fatty acid.
The Citric acid cycle is a series of biochemical reactions that use acetyl CoA (produced by oxidation of pyruvate) to produce carbon dioxide, NADH and FADH2 in a series of redox reactions.
Intermediates involved in the lipogenesis are derivatives of C4 molecule butyric acid. Butyric acid is a monocarboxylic acid and has 4 carbon atoms. Thus, each intermediate of the lipogenesis is a C4 derivative of monocarboxylic acid. The structure of butyric acid is,
Succinic acid is a dicarboxylic acid and has 4 carbon atoms. Thus, each intermediate of the citric acid cycle is a C4 derivative of dicarboxylic acid. The structure of succinic acid is,
(d)

Answer to Problem 25.106EP
The lipogenesis C4-ACP monoacid intermediate counterpart for the citric acid cycle C4-diacid intermediate fumarate is crotonate.
Explanation of Solution
Fumarate is the intermediate in the citric acid cycle. The structure of fumarate is,
Crotonate is the intermediate in the lipogenesis. The structure of crotonate is,
Fumarate and crotonate are the unsaturated derivatives of the
Want to see more full solutions like this?
Chapter 25 Solutions
GENERAL,ORGANIC,+BIO.CHEM.-MINDTAP
- Part 9 of 9 Consider the products for the reaction. Identify the major and minor products. HO Cl The E stereoisomer is the major product and the Z stereoisomer is the minor product ▼ S major product minor productarrow_forwardConsider the reactants below. Answer the following questions about the reaction mechanism and products. HO Clarrow_forwardjulietteyep@gmail.com X YSCU Grades for Juliette L Turner: Orc X 199 A ALEKS - Juliette Turner - Modul X A ALEKS - Juliette Turner - Modul x G butane newman projection - Gox + www-awa.aleks.com/alekscgi/x/Isl.exe/10_u-IgNslkr7j8P3jH-IBxzaplnN4HsoQggFsejpgqKoyrQrB2dKVAN-BcZvcye0LYa6eXZ8d4vVr8Nc1GZqko5mtw-d1MkNcNzzwZsLf2Tu9_V817y?10Bw7QYjlb il Scribbr citation APA SCU email Student Portal | Main Ryker-Learning WCU-PHARM D MySCU YSCU Canvas- SCU Module 4: Homework (Ch 9-10) Question 28 of 30 (1 point) | Question Attempt: 1 of Unlimited H₂SO heat OH The mechanism of this reaction involves two carbocation intermediates, A and B. Part 1 of 2 KHSO 4 rearrangement A heat B H₂O 2 OH Draw the structure of A. Check Search #t m Save For Later Juliet Submit Assignm 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forward
- The electrons flow from the electron-rich atoms of the nucleophile to the electrons poor atoms of the alkyl halide. Identify the electron rich in the nucleophile. Enter the element symbol only, do not include any changes.arrow_forwardHello, I am doing a court case analysis in my Analytical Chemistry course. The case is about a dog napping and my role is prosecution of the defendant. I am tasked in the Area of Expertise in Neutron Activation and Isotopic Analysis. Attached is the following case study reading of my area of expertise! The landscaping stone was not particularly distinctive in its decoration but matched both the color and pattern of the Fluential’s landscaping stone as well as the stone in the back of the recovered vehicle. Further analysis of the stone was done using a technique called instrumental neutron activation analysis. (Proceed to Neutron Activation data) Photo Notes: Landscaping stone recovered in vehicle. Stone at Fluential’s home is similar inappearance. Finally, the white paint on the brick was analyzed using stable isotope analysis. The brick recovered at the scene had smeared white paint on it. A couple of pieces of brick in the back of the car had white paint on them. They…arrow_forwardCite the stability criteria of an enamine..arrow_forward
- What would you expect to be the major product obtained from the following reaction? Please explain what is happening here. Provide a detailed explanation and a drawing showing how the reaction occurs. The correct answer to this question is V.arrow_forwardPlease answer the question for the reactions, thank youarrow_forwardWhat is the product of the following reaction? Please include a detailed explanation of what is happening in this question. Include a drawing showing how the reagent is reacting with the catalyst to produce the correct product. The correct answer is IV.arrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning




