Concept explainers
Interpretation:
The effect of high level of citrate on the rate of glycolysis needs to be determined.
Concept introduction:
The main regulatory enzymes of glycolysis are hexokinase, pyruvate kinase and phosphofructokinase.
In case of citric acid cycle, the enzyme pyruvate dehydrogenase is turned off when fatty acids and acetyl CoA are in high concentrations. The enzyme is turned on when requirement of acetyl CoA is high and when there is high energy demand.
The other three enzymes which are regulated includes - alpha ketoglutarate dehydrogenase, isocitrate dehydrogenase and citrate synthase. The enzyme citrate synthase varies according to the
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
General, Organic, & Biological Chemistry
- Glucose is the preferred energy source of the brain, Why?arrow_forwardwhat is the definition of energy from a metabolic perspective?arrow_forwardIn the electron transport chain, the hydrogen ions enter the inner compartment of mitochondria through special channels formed by A. ATP synthase. B. coenzyme A. C. acetyl CoA. D. oxygen.arrow_forward
- Muscle does not provide glucose for the brain during times of starvation. Why? You may choose more than one answer. Muscle lacks sufficient glucose stores. Muscle uses the glucose for movement to go find food. Liver provides glucose for brain Glucagon prevents the secretion of glucose Muscle lacks the enzymes necessary to produce free glucosearrow_forwardWhat is the role of NAD and NADH in fermentation?arrow_forwardThe average adult consumes approximately 11,700 kJ per day. Assuming that the metabolic pathways leading to ATP synthesis operate at 50% thermodynamic efficiency, about 5850 kJ ends up in the form of synthesized ATP. The average adult consumes approximately 11,700 kJ per day. Assuming that the metabolic pathways leading to ATP synthesis operate at 50% thermodynamic efficiency, about 5850 kJ ends up in the form of synthesized ATP. Imagine that creatine phosphate, rather than ATP, is the universal energy carrier molecule in the human body. Assume that the cellular concentrations of creatine phosphate, creatine, and phosphate are 21.7 mM, 2.17×10-3 mM, and 6.30 mM, respectively. Calculate the weight of creatine phosphate that would need to be consumed each day by a typical adult human if creatine phosphate could not be recycled. Estimate the free energy of hyrdolysis of creatine phosphate under cellular conditions to determine how many moles are required. Use the standard…arrow_forward
- At what point in photosynthesis is the proton motive force generated? in the light harvesting complex of photosystem I| as electrons are passed to the enzyme NADP+ reductase as electrons move between photosystem II and photosystem I in the Calvin cycle O as electrons are passed to the primary electron acceptorarrow_forwardDuring the overall process of glycolysis, in which of the following occurs for each glucose molecule processed. net loss of two ATP molecules net loss of four ATP molecules net gain of two ATP molecules net gain of four ATP moleculesarrow_forwardHow many electron carrier molecules (both NADH and FADH₂) are made per glucose put in to glycolysis? How many electron carrier molecules (both NADH and FADH₂) are made per pyruvate put in to the Krebs Cycle? How many electron carrier molecules (both NADH and FADH₂) are made by the Krebs Cycle per glucose consumed by the organism? How many electron carrier molecules in total (both NADH and FADH₂) have been made from a single glucose after both glycolysis and the Krebs Cycle? How many electrons are being carried from glucose at this point (Hint: 2 per molecule)?arrow_forward
- 10. The breakdown of glycogen to glucose is called O a. glycogenesis Ob. gluconeogenesis O c. glycogenolysis d. hydrolysisarrow_forwardWhich statements describe electron transport chain events? Two electrons pass between cytochromes through a series of redox reactions. Citrate metabolism results in the formation of one FADH2 and three NADH. NADH releases two hydrogen ions and donates two electrons to coenzyme Q. ATP synthase uses the energy from the redox reactions to generate ATP.arrow_forward
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- Chemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co