College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 29P
The microwaves in a microwave oven are produced in a special tube called a magnetron. The electrons orbit in a magnetic field at a frequency of 2.4 GHz, and as they do so they emit 2.4 GHz
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 24 - In Figure Q24.1, suppose the magnet on the right...Ch. 24 - You have a bar magnet whose poles are not marked....Ch. 24 - When you are in the southern hemisphere, does a...Ch. 24 - If you were standing directly at the earths north...Ch. 24 - If you took a sample of magnetotactic bacteria...Ch. 24 - Green turtles use the earths magnetic field to...Ch. 24 - Prob. 7CQCh. 24 - Prob. 8CQCh. 24 - Prob. 9CQCh. 24 - As shown in Figure Q24.10, a uniform magnetic...
Ch. 24 - Prob. 11CQCh. 24 - An electron is moving in a circular orbit in a...Ch. 24 - Prob. 13CQCh. 24 - One long solenoid is placed inside another...Ch. 24 - Prob. 15CQCh. 24 - Prob. 16CQCh. 24 - Prob. 17CQCh. 24 - Prob. 18CQCh. 24 - An electron is moving near a long,...Ch. 24 - Two positive charges are moving in a uniform...Ch. 24 - An electron is moving in a circular orbit in the...Ch. 24 - An electron and a proton are moving in circular...Ch. 24 - A proton moves in a region of uniform magnetic...Ch. 24 - Prob. 24CQCh. 24 - Prob. 25CQCh. 24 - A long wire and a square loop lie in the plane of...Ch. 24 - A solenoid carries a current that produces a field...Ch. 24 - An unmagnetized metal sphere hangs by a thread....Ch. 24 - If a compass is placed above a current-carrying...Ch. 24 - Prob. 31MCQCh. 24 - Figure Q24.32 shows four particles moving to the...Ch. 24 - Four particles of identical charge and mass enter...Ch. 24 - If all of the particles shown in Figure Q24.33 are...Ch. 24 - If two compasses are brought near enough to each...Ch. 24 - Table 24.1 notes that the magnetic field 10 cm...Ch. 24 - Use the data from Table 24.1 to determine at what...Ch. 24 - The magnetic field at the center of a...Ch. 24 - For a particular scientific experiment, it is...Ch. 24 - Prob. 5PCh. 24 - An investigator places a sample 1.0 cm from a wire...Ch. 24 - Although the evidence is weak, there has been...Ch. 24 - Some consumer groups urge pregnant women not to...Ch. 24 - A long wire carrying a 5.0 A current perpendicular...Ch. 24 - The element niobium, which is a metal, is a...Ch. 24 - The small currents in axons corresponding to nerve...Ch. 24 - A solenoid used to produce magnetic fields for...Ch. 24 - Two concentric current loops lie in the same...Ch. 24 - The magnetic field of the brain has been measured...Ch. 24 - Prob. 16PCh. 24 - What is the magnetic field at the center of the...Ch. 24 - Experimental tests have shown that hammerhead...Ch. 24 - Prob. 19PCh. 24 - You have a 1.0-m-long copper wire. You want to...Ch. 24 - In the Bohr model of the hydrogen atom, the...Ch. 24 - A proton moves with a speed of 1.0 107 m/s in the...Ch. 24 - An electron moves with a speed of 1.0 107 m/s in...Ch. 24 - An electromagnetic flowmeter applies a magnetic...Ch. 24 - The aurora is caused when electrons and protons,...Ch. 24 - Problem 24.25 describes two particles that orbit...Ch. 24 - Prob. 27PCh. 24 - Charged particles orbit magnetic field lines in...Ch. 24 - The microwaves in a microwave oven are produced in...Ch. 24 - A cyclotron is used to produce a beam of...Ch. 24 - A medical cyclotron used in the production of...Ch. 24 - Early black-and-white television sets used an...Ch. 24 - Prob. 33PCh. 24 - Prob. 34PCh. 24 - Prob. 35PCh. 24 - A uniform 2.5 T magnetic field points to the...Ch. 24 - Prob. 37PCh. 24 - A current loop in a motor has an area of 0.85 cm2....Ch. 24 - A square current loop 5.0 cm on each side carries...Ch. 24 - People have proposed driving motors with the...Ch. 24 - a. What is the magnitude of the torque on the...Ch. 24 - Prob. 42PCh. 24 - A solenoid is near a piece of iron, as shown in...Ch. 24 - The right edge of the circuit in Figure P24.44...Ch. 24 - Prob. 45GPCh. 24 - An electron travels with speed 1.0 107 m/s...Ch. 24 - Prob. 47GPCh. 24 - A device called a railgun uses the magnetic force...Ch. 24 - Irrigation channels that require regular flow...Ch. 24 - Typical blood velocities in the coronary arteries...Ch. 24 - A power line consists of two wires, each carrying...Ch. 24 - Consider the long rectangular loop in Figure...Ch. 24 - Bats are capable of navigating using the earths...Ch. 24 - At the equator, the earths field is essentially...Ch. 24 - A 1.0-m-long, 1.0-mm-diaraeter copper wire carries...Ch. 24 - An insulated copper wire is wrapped around an iron...Ch. 24 - Assuming the particle in Figure P24.59 is...Ch. 24 - How does the kinetic energy of the particle in...Ch. 24 - Prob. 61MSPPCh. 24 - Next, a particle with the same mass and velocity...Ch. 24 - What is the direction of the magnetic force on a...Ch. 24 - What is the magnitude of the force on this ion? A....Ch. 24 - What magnitude electric field is necessary to...Ch. 24 - The electric field produces a potential...Ch. 24 - In the spectrometer shown in Figure P24.67, do the...Ch. 24 - The moving ions can be thought of as a current...Ch. 24 - Why is it important that the ions have a known...Ch. 24 - A mass spectrometer similar to the one in Figure...
Additional Science Textbook Solutions
Find more solutions based on key concepts
2. What are the primary functions of the skeletal system?
Human Anatomy & Physiology (2nd Edition)
What is the molarity of an aqueous solution that is 5.88% NaCl by mass? (Assume a density of 1.02 g/mL for the ...
Introductory Chemistry (6th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
Under what conditions would you expect microorganisms to grow as a result of denitrification?
Brock Biology of Microorganisms (15th Edition)
Use the key to classify each of the following described tissue types into one of the four major tissue categori...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electromagnetic wave with a peak magnetic field magnitude of 1.50 107 T has an associated peak electric field of what magnitude? (a) 0.500 1015 N/C (b) 2.00 105 N/C (c) 2.20 104 N/C (d) 45.0 N/C (e) 22.0 N/Carrow_forwardAn electron in a TV CRT moves with a speed of 6.0107 m/s, in a direction perpendicular to Earth's field, which has a strength of 5.0105 T. (a) What strength electric field must be applied perpendicular to the Earth’s field to make the election moves in a straight line? (b) If this is done between plates separated by 1.00 cm, what is the voltage applied? (Note that TVs are usually surrounded by a ferromagnetic material to shield against external magnetic fields and avoid the need for such a collection,)arrow_forwardAn electron moving with a velocity v=(4.0i+3.0j+2.0k)106m/s enters a region where there is a uniform electric field and a uniform magnetic field. The magnetic field is given by v=(1.0i2.0j+4.0k)102T. If the electron travels through a region without being deflected, what is the electric field?arrow_forward
- Two infinitely long current-carrying wires run parallel in the xy plane and are each a distance d = 11.0 cm from the y axis (Fig. P30.83). The current in both wires is I = 5.00 A in the negative y direction. a. Draw a sketch of the magnetic field pattern in the xz plane due to the two wires. What is the magnitude of the magnetic field due to the two wires b. at the origin and c. as a function of z along the z axis, at x = y = 0? FIGURE P30.83arrow_forward(a) An oxygen16 ion with a mass at 2.661026kg travels at 5.00106m/s perpendicular to a 1.20T magnetic field, which makes it move in a circular arc with a 0.231-m radius. What positive charge is on the ion? (b) What is the radio of this charge to the charge of an electron? (c) Discuss why the radio found in (b) should be an integer.arrow_forwardElectromagnetic braking can be achieved by applying a strong magnetic field to a pinning metal disk attached to a shaft. (a) How can a magnetic field slow the spinning of a disk? (b) Would the brakes work if the disk was made of plastic instead of metal?arrow_forward
- One common type of cosmic ray is a proton traveling at close to the speed of light. If the proton is traveling downward, as shown in Figure P30.14, at a speed of 1.00 107 m/s, what are the magnitude and direction of the magnetic field at point B?arrow_forwardA typical microwave oven operates at a frequency of 2.45 GHz. What is the wavelength associated with the electromagnetic waves in the oven? (a) 8.20 m (b) 12.2 cm (c) 1.20 108 m (d) 8.20 109 m (e) none of those answersarrow_forwardConsider an electromagnetic wave traveling in the positive y direction. The magnetic field associated with the wave at some location at some instant points in the negative x direction as shown in Figure OQ24.12. What is the direction of the electric field at this position and at this instant? (a) the positive x direction (b) the positive y direction (c) the positive z direction (d) the negative z direction (e) the negative y direction Figure OQ24.12arrow_forward
- A very large parallel-plate capacitor has uniform charge per unit area + on the upper plate and on the lower plate. The plates are horizontal, and both move horizontally with speed v to the right. (a) What is the magnetic field between the plates? (b) What is the magnetic field just above or just below the plates? (c) What are the magnitude and direction of the magnetic force per unit area on the upper plate? (d) At what extrapolated speed v will the magnetic force on a plate balance the electric force on the plate? Suggestion: Use Amperes law and choose a path that closes between the plates of the capacitor.arrow_forwardThe magnetic field between the poles of a horseshoe electromagnet is uniform and has a cylindrical symmetry about an axis from the middle of the South Pole to the middle of the North Pole. The magnitude of the magnetic field changes as a rate of dB/dt due to the changing current through the electromagnet, Determine the electric field at a distance r from the center.arrow_forwardThe Hall effect finds important application in the electronics industry. It is used to find the sign and density of the carriers of electric current in semiconductor chips. The arrangement is shown in Figure P22.66. A semiconducting block of thickness t and width d carries a current I in the x direction. A uniform magnetic field B is applied in the y direction. If the charge carriers are positive, the magnetic force deflects them in the z direction. Positive charge accumulates on the top surface of the sample and negative charge on the bottom surface, creating a downward electric field. In equilibrium, the downward electric force on the charge carriers balances the upward magnetic force and the carriers move through the sample without deflection. The Hall voltage ΔVH = Vc − Va between the top and bottom surfaces is measured, and the density of the charge carriers can be calculated from it. (a) Demonstrate that if the charge carriers are negative the Hall voltage will be negative. Hence, the Hall effect reveals the sign of the charge carriers, so the sample can be classified as p-type (with positive majority charge carriers) or n-type (with negative). (b) Determine the number of charge carriers per unit volume n in terms of I, t, B, ΔVH, and the magnitude q of the carrier charge. Figure P22.66arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY