A cyclotron is used to produce a beam of high-energy deuterons that then collide with a target to produce radioactive isotopes for a medical procedure. Deuterons are nuclei of deuterium, an isotope of hydrogen, consisting of one neutron and one proton, with total mass 3.34 × 10–27 kg. The deuterons exit the cyclotron with a kinetic energy of 5.00 MeV.
a. What is the speed of the deuterons when they exit?
b. If the magnetic field inside the cyclotron is 1.25 T. what is the diameter of the deuterons’ largest orbit, just before they exit?
c. If the beam current is 400 μA, how many deuterons strike the target each second?
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
College Physics: A Strategic Approach (3rd Edition)
Additional Science Textbook Solutions
Applied Physics (11th Edition)
The Cosmic Perspective (8th Edition)
Physics: Principles with Applications
Life in the Universe (4th Edition)
Conceptual Physical Science (6th Edition)
- Unreasonable Results A proton has a mass of 1.671027 kg. A physicist measures the proton's total energy to be 50.0 MeV. (a) What is the proton's kinetic energy? (b) What is unreasonable about this result? (c) Which assumptions are unreasonable or inconsistent?arrow_forwardAn interstellar space probe is launched from Earth. After a brief period of acceleration, it moves with a constant velocity, 70.0% of the speed of light. Its nuclear-powered batteries supply the energy to keep its data transmitter active continuously. The batteries have a lifetime of 15.0 years as measured in a rest frame. (a) How long do the batteries on the space probe last as measured by mission control on Earth? (b) How far is the probe from Earth when its batteries fail as measured by mission control? (c) How far is the probe from Earth as measured by its built-in trip odometer when its batteries fail? (d) For what total time after launch are data received from the probe by mission control? Note dial radio waves travel at the speed of light and fill the space between the probe and Earth at the time the battery fails.arrow_forwardAn experimental form of cancer therapy involves the use of a beam of highly ionized carbon atoms with a charge of +6e (all six electrons have been removed). The mass of the ions is 11.172 GeV/2. The accelerator is 5.50 m long and the ions are accelerated through a 120-MV potential difference. What is the ion's kinetic energy? MeVarrow_forward
- An evacuated tube uses an accelerating voltage of 1.5 kV to accelerate a beam of electrons that hit a copper plate and generated x-rays. What is the maximum (non-relativistic) velocity of the electrons?arrow_forwardCold Atoms: When atoms are cooled to very low temperatures, they move very slowly. At these low speeds, atoms can fall under their own weight. A team of scientists is studying cold ions. Each ion has a mass of 1.91 x 10-25 kg, a charge of 1.6 x 10-19 C, and an average velocity of 15.0 mm/s due north. The scientists are trying to focus a beam of these atoms on a detector 1.000 m away. However, gravity is deflecting the beam. One scientist suggests using a magnetic field to counteract the force of gravity. (a) What minimum magnetic field strength could counteract the force of gravity for these particles? (b) What direction should the field be oriented? Either describe the direction or draw a picture that shows the velocity of the particles, the direction of gravity, and the direction of the magnetic field. Ignore the earth's magnetic field. It has eliminated by magnetic shielding around the experimental setup.arrow_forwardIn this problem, we will try to understand why chemical reactions cannot power the Sun, but nuclear reactions can. The energy scale of chemical reactions is a few eV, where eV is a unit of energy called an electron volt. 1 eV = 1.602 x 10-19 J. A typical chemical reaction involves an energy change of ~0.1 to 10 eV. In contrast, a nuclear reaction typically involves a change in energy of order a few MeV (mega electron volts; a factor of a million larger). Suppose that the Sun has a constant luminosity throughout its life, equal to its current luminosity of L⊙=3.827×1026J/s . Suppose also that the Sun is made entirely of hydrogen (or just protons, since the mass of the electron is about 2000 times smaller and is negligible in comparison). If every pair of two protons in the Sun undergo a one-time chemical reaction that nets ~1 eV of energy, how long would it take (in years) to expend all the available chemical energy?arrow_forward
- What is the velocity of a proton with a kinetic energy of 3.4 eV. Give your answers in 105 m/s with 3 decimal places.arrow_forwardThe Russian physicist P. A. C˘ erenkov discovered that a charged particle traveling in a solid with a speed exceeding the speed of light in that material radiates electromagnetic radiation. (This is analogous to the sonic boom produced by an aircraft moving faster than the speed of sound in air; see Section 16.9. C˘ erenkov shared the 1958 Nobel Prize for this discovery.) What is the minimum kinetic energy (in electron volts) that an electron must have while traveling inside a slab of crown glass (n = 1.52) in order to create this C˘ erenkov radiation?arrow_forwardAn atom of beryllium (m = 8.00 u) splits into two atoms of helium (m = 4.00 u) with the release of 92.2 keV of energy. If the original beryllium atom is at rest, find the kinetic energies and speeds of the two helium atoms.arrow_forward
- A small charged particle of mass 1.0 x 10-8 kg is traveling rightward between two plates separated by a distance d = 80 cm, as shown below. The electric field between the plates has a constant magnitude of 3.0 x 106 V/m and is directed leftward. The particle's speed is 5.0 x 103 m/s at the left plate and 2.0 x 10³ m/s at the right plate. Ignore the effect of gravity. F (a) Is the particle positively charged or negatively charged? Justify your answer briefly but clearly. (b) Find the charge (with correct sign) of the particle, as well as the potential difference (with correct sign) through which the particle has moved. (Note: The potential difference is positive if the right plate is at a higher potential than the left plate, and negative if the right plate is at a lower potential than the left plate. Show all your work; do not simply plug numbers into a result derived in class.)arrow_forwardThe Tevatron accelerator at Fermilab (Illinois) is designed to carry an 11-mA beam of protons (q = 1.6 × 10-19 C) traveling at very nearly the speed of light (3.0 × 10$ m/s) around a ring 6300 m in circumference. How many protons are in the beam?arrow_forwardProblem 17: An evacuated tube uses a potential difference of AV= 0.56 kV to accelerate electrons, which then hit a copper plate and produce X-rays. . Part (a) Write an expression for the non-relativistic speed of these electrons v in terms of e, AV, and m, assuming the electrons start from rest. v = AV 7 9 HOME a b d. 4 5 e h 1 j k P END m S V VO BACKSPACE CLEAR DEL Submit Hint Feedback I give up! Hints: 0% deduction per hint. Hints remaining: 2 Feedback: 1% deduction per feedback. Part (b) Calculate the non-relativistic speed of these electrons v in m/s.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning