A mass spectrometer similar to the one in Figure P24.67 is designed to analyze biological samples. Molecules in the sample are singly ionized, then they enter a 0.80 T uniform magnetic field at a speed of 2.3 × 10 5 m/s. If a molecule has a mass 85 times the mass of the proton, what will be the approximate distance between the points where the ion enters and exits the magnetic field? A. 25 cm B. 50 cm C. 75 cm D. 100 cm
A mass spectrometer similar to the one in Figure P24.67 is designed to analyze biological samples. Molecules in the sample are singly ionized, then they enter a 0.80 T uniform magnetic field at a speed of 2.3 × 10 5 m/s. If a molecule has a mass 85 times the mass of the proton, what will be the approximate distance between the points where the ion enters and exits the magnetic field? A. 25 cm B. 50 cm C. 75 cm D. 100 cm
A mass spectrometer similar to the one in Figure P24.67 is designed to analyze biological samples. Molecules in the sample are singly ionized, then they enter a 0.80 T uniform magnetic field at a speed of 2.3 × 105 m/s. If a molecule has a mass 85 times the mass of the proton, what will be the approximate distance between the points where the ion enters and exits the magnetic field?
Part C
Find the height yi
from which the rock was launched.
Express your answer in meters to three significant figures.
Learning Goal:
To practice Problem-Solving Strategy 4.1 for projectile motion problems.
A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.
PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems
MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model.
VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ.
SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25
Chapter 24 Solutions
College Physics: A Strategic Approach (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.