Concept explainers
What is the role of each of the following in the electron transport chain: (a)
(a)
Interpretation:
The role of FADH2 in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
In the presence of oxygen means aerobic respiration, this pyruvate enters in the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like
Answer to Problem 53P
FADH2 is created from FAD through reduction-oxidation reactions in the Krebs cycle during respiration. It gives its electrons in the electron transport chain that produces two ATPs for every FADH2 molecule.
Explanation of Solution
Citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction. It initiates with the reaction of acetyl CoA (a 2 C's substance) that reacts with a 4 C's substance to form a product of 6 C's. Later, carbon atoms are removed in the form of carbon dioxide gas.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
(b)
Interpretation:
The role of ADP in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like
Answer to Problem 53P
In the electron transport chain, a single molecule of NADH has generated three ATP molecules from ADP in the mitochondria.
Explanation of Solution
Citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
(c)
Interpretation:
The role of ATP synthase in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like
Answer to Problem 53P
In the electron transport chain, the ATP synthase is an enzyme that converts the mechanical work into chemical energy and produces an ATP molecule. The ATP powers most cellular reactions in the living organism.
Explanation of Solution
Citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.
In this process, 2 H's are transferred to FAD and produce FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
(d)
Interpretation:
The role of the inner mitochondrial membrane in the electron transport chain should be determined.
Concept Introduction:
Aerobic respiration occurs in two steps:
- Glycolysis
- Citric acid cycle
In the presence of oxygen means aerobic respiration, this pyruvate enters the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like
Answer to Problem 53P
The electron transport chain is embedded in the inner mitochondrial membrane and it involves the shuffles in the electrons from NADH and FADH2 to molecular oxygen.
Explanation of Solution
Citric acid cycle is also known as the tricarboxylic acid cycle or Krebs cycles. In this cycle, all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.
In this process, 2 H's are transferred to FAD and produces FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:
- Complex I to Complex IV
- Coenzymes -ubiquinone and Cytochrome c
The electron transport chain process is involved in the pumping of the protons from the mitochondrial matrix to the intermembrane space. It reduces oxygen and forms water.
Want to see more full solutions like this?
Chapter 23 Solutions
CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY
- 3. The ability to roll your tongue (R) is a dominant trait. A woman who cannot roll her tongue ( ) has a baby with a man who is homozygous dominant for this trait ( R = can roll tongue, r = cannot roll tongue ). Possibility 1: Possibility 2: Possibility 3: Possibility 4: Genotype Phenotypearrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardwhen 15.00 mL of 3.00 M NaOH was mixed in a caliorimeter with 13.50 mL of 3.00 M HCL, both initally at room temperature (22.00°C), the temperature increased 30.00°C. the resultant salt solution had a mass of 28.50g and a specific heat capacity of 3.74 J K^-1 g^-1. what is the heat capcity of the calorimeter in (J/ °C)? note: the molar enthalpy of neutralization per mole of HCl is -55.84kJ mol^-1arrow_forward
- pls help kindlyarrow_forwardCheck F1 三 www-awy.aleks.com/alekscgi/x/isl.exe/1o_u-igNslkr7j8P3JH-IvWymv180mkUcabkqJOgnjFoc724-61BXBxLvSRpvMeqRR- Homework 8 Chapter 17 & 18 Question 3 of 14 (1 point) | Question Attempt: 1 of Unlimited Draw the structures of the products formed by hydrolysis of the following tripeptide at physiological pH. Cys-Asn-Thr Note: Reference the Naturally occurring amino acids data table for additional information. Click and drag to start drawing a structure. 80 F3 F4 2 # 3 $ 4 45 % F5 9> F6 F7 27 W E R T Y U Sav © 2025 McGraw Hill LLC. All Rights Reserved * 8 DII F8 4 ( 9 F9arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning