Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 4P
Calculate the cutting time if the length of cut is 24 in., the feed rate is 0.030 ipr, and the cutting speed is 80 fpm. The allowance is 0.5 in. and the diameter is 8 in.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The face milling cutter of D = 200 mm used to cut a block which is 200 mm H, 1=480 mm, if f-
0.7 mm/rev is used and the overrun of the cutter is 12 mm and cutting speed 320 mm/min. Calculate
the machining time.
Cuttin
None
The workpiece of size 50 mm x 90 mm length is to be
reduced to 0 42 mm x 85 mm. If the depth of cut is 0.5 mm,
feed is 0.25 mm/rev and cutting speed is 45 m/min find the
time taken to complete one job and production rate at the
end of 8 hr shift.
Chapter 23 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 23 - How is the tool-work relationship in turning...Ch. 23 - What different kinds of surfaces can be produced...Ch. 23 - How does form turning differ from ordinary...Ch. 23 - What is the basic difference between facing and a...Ch. 23 - Which operations shown in Figure 23.3 do not form...Ch. 23 - Why is it difficult to make heavy cuts if a form...Ch. 23 - Show how equation 23.6 is an approximate equation.Ch. 23 - Why is the spindle of the lathe hollow?Ch. 23 - What function does a lathe carriage have?Ch. 23 - Why is feed specified for a boring operation...
Ch. 23 - Why are depths of cut in boring usually smaller...Ch. 23 - How can work be held and supported in a lathe?Ch. 23 - How is a workpiece that is mounted between centers...Ch. 23 - What will happen to the workpiece when turned, if...Ch. 23 - Why is it not advisable to hold hot-rolled steel...Ch. 23 - How does a steady rest differ from a follow rest?Ch. 23 - What are the advantages and disadvantages of a...Ch. 23 - Why should the distance the cutting tool overhangs...Ch. 23 - Prob. 19RQCh. 23 - How can a tapered part be turned on a lathe?Ch. 23 - Why might it be desirable to use a heavy depth of...Ch. 23 - If the rpm for a facing cut (assuming given work...Ch. 23 - Why is it usually necessary to take relatively...Ch. 23 - How does the corner radius of the tool influence...Ch. 23 - What effect does a BUE have on the diameter of the...Ch. 23 - How does the multiple-spindle screw machine differ...Ch. 23 - Why does boring ensure concentricity between the...Ch. 23 - Why are vertical spindle machines better suited...Ch. 23 - Prob. 29RQCh. 23 - Prob. 30RQCh. 23 - In which figures in this chapter is a dead center...Ch. 23 - Prob. 32RQCh. 23 - In which figures in this chapter showing setups do...Ch. 23 - How many form tools are being utilized in the...Ch. 23 - Prob. 35RQCh. 23 - Select the speed, feed, and depth of cut for...Ch. 23 - Calculate the rpm NS to run the spindle on a lathe...Ch. 23 - The lathe in problem 2 has rpm settings of 20, 30,...Ch. 23 - Calculate the cutting time if the length of cut is...Ch. 23 - Calculate the metal removal rate for machining at...Ch. 23 - Determine the speed, feed, and depth of cut when...Ch. 23 - At a speed of 90 fpm, feed of 0.030 ipr, and depth...Ch. 23 - Calculate the cutting time for a 4-in. length of...Ch. 23 - For a boring operation at V=90,fr=0.030, and...Ch. 23 - A cutting speed of 100 sfpm has been selected for...Ch. 23 - The following data apply for machining a part on a...Ch. 23 - A finish cut for a length of 10 in. on a diameter...Ch. 23 - A workpiece 10 in. in diameter is to be faced down...Ch. 23 - A hole 89 mm in diameter is to be drilled and...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
41. An ideal gas, kept in a 5-liter [L] container at 300 kelvins [K], exhibits a pressure of 2 atmospheres [atm...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
45. A box has a volume of 10 gallons [gal]. If two sides of the box measure 2.4 meters [m] by 2.4 feet [ft], wh...
Thinking Like an Engineer: An Active Learning Approach (3rd Edition)
What parts are included in the vehicle chassis?
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
The rate of heat addition and the magnitude of kinetic and potential energy change.
Introduction to Heat Transfer
For the pipe flow into a reservoir of Example 8.5 consider the effect of pipe roughness on flow rate, assuming ...
Fox and McDonald's Introduction to Fluid Mechanics
Determine the phase for each of these cases a. Water5C,100kPa b. Ammonia5C,100kPa c. R410A5C,700kPa d. R134a5C,...
Fundamentals Of Thermodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- How much machining time required to turn a mild steel rod from 65mm to 58 mm over a length of 100 mm by turning using a carbide insert. If the approach length and over run length is = 5 mm, Cutting speed is 20 m/min and feed is =0.2 mm/rev, and the depth of cut is 0.5mm Darrow_forwardformula and calculationarrow_forwardIt is required to reduce the thickness of cast iron workpiece with dimensions (L x w x t) of (230 mm x 120 mm x 25 mm) to 22 mm using shaper machine. Given that average cutting speed is 21 m/min, feed 1.2 mm/double stroke, and return/cutting time ratio is 3/4. The approach at each end is 72 mm. If the permissible depth of cut is 2 mm, determine the cutting time in the following cases: i) Using shaper with a mechanically driven ram. ii) Using shaper with a hydraulically driven ram. Solution: i) Mechanically ( ii) Hydraulicallyarrow_forward
- Find the machining time required to turn a mild steel rod from 65mm to 58 mm over a length of 100 mm by using a carbide insert. If the approach length and over run length is taken as 5 mm, Cutting speed as 20 m/min and feed is =0.2 mm/rev, and the depth of cut is 0.5mmarrow_forwardI need correct answerarrow_forwardQuestion 4. The following data are available from orthogonal cutting experiments. The depth of cut (feed) to = 0.13 mm, width of cut b = 2.5 mm, rake angle a = - 5°, and cutting speed V = 2 m/s. Chip thickness, t. (mm) = 0.23 Cutting force, F. (N) = 430 Thrust force, F; (N) = 280 Determine the shear angle ð, friction coefficient u , shear stress t, shear strain y on the shear plane, chip velocity Ve, and shear velocity Vs, as well as energies uf ,Ug, and uarrow_forward
- What is the answerarrow_forwardCalculate the machining time to complete the job as shown below from a bar 120 mm long and 60 mm diameter, Assume: cutting speed for turning 30 m/min, feed for turning 1 mm/rev, depth of cut not to exceed 5 mm, cutting speed for drilling 25 m/min, feed for drilling 0.3 mm/rev, point angle 120? 30 30 60arrow_forwardCalculate the time required for completing a 5mm deep finishing cut on a 150mm wide, 600mmlong face of a 25mm thick steel block using a face milling cutter of 150mm diameter with 6teeth. The cutting condition are Vc =1.5m/sec and fz = 0.1mm.arrow_forward
- In turning of stales steel alloy, 1100 mm length and 400 mm diameter, the Feed was 0.35 mm/rev, and depth of cut = 2.5 mm. The tool used in this cutting is cemented carbide tool where Taylor tool life parameters are n = 0.24 and C = 450 (tool life (min) and cutting speed (m/min). Compute the cutting speed that will allow the tool life to be 10% longer than the machining time for this part.arrow_forwardQ24. For the below figure please write its part program. The depth of the cut is 0.25 inches (Finishing operation), while the tool's diameter is 0.5 inches. Consider the speed and feed. -0.75- - - 1.0 60⁰ RO.25 (0, 0) 0.75-arrow_forwardIn orthogonal machining operation the chip thickness and the uncut chip thickness are equal to 0.45 mm. If the tool rake and is 0 deg. What is the shear plane angle?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Hand Tools; Author: UCI Media;https://www.youtube.com/watch?v=4o0tqF0jDdo;License: Standard Youtube License