Degarmo's Materials And Processes In Manufacturing
13th Edition
ISBN: 9781119492825
Author: Black, J. Temple, Kohser, Ronald A., Author.
Publisher: Wiley,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 19RQ
To determine
The difference between a ram and a saddle turret lathe.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Y
F1
α
В
X
F2
You and your friends are planning to move the log. The log.
needs to be moved straight in the x-axis direction and it
takes a combined force of 2.9 kN. You (F1) are able to exert
610 N at a = 32°. What magnitude (F2) and direction (B) do
you needs your friends to pull?
Your friends had to pull at:
magnitude in Newton, F2
=
direction in degrees, ẞ =
N
deg
Problem 1
8 in.
in.
PROBLEM 15.109
Knowing that at the instant shown crank BC has a constant angular
velocity of 45 rpm clockwise, determine the acceleration (a) of Point A,
(b) of Point D.
8 in.
Answer: convert rpm to rad/sec first. (a). -51.2j in/s²; (b). 176.6 i + 50.8 j in/s²
Problem 4
The semicircular disk has a radius of 0.4 m. At one instant, when 0-60°, it is rotating
counterclockwise at 0-4 rad/s, which is increasing in the same direction at 1 rad/s². Find the
velocity and acceleration of point B at this instant. (Suggestion: Set up relative velocity and
relative acceleration that way you would for a no-slip disk; remember what I told you to memorize
on the first day of class.) (Answer: B = −2.98î - 0.8ĵ m/s, ãB = 2.45î - 5.74ĵ m/s²)
B
0.4 m
y
X
Chapter 23 Solutions
Degarmo's Materials And Processes In Manufacturing
Ch. 23 - How is the tool-work relationship in turning...Ch. 23 - What different kinds of surfaces can be produced...Ch. 23 - How does form turning differ from ordinary...Ch. 23 - What is the basic difference between facing and a...Ch. 23 - Which operations shown in Figure 23.3 do not form...Ch. 23 - Why is it difficult to make heavy cuts if a form...Ch. 23 - Show how equation 23.6 is an approximate equation.Ch. 23 - Why is the spindle of the lathe hollow?Ch. 23 - What function does a lathe carriage have?Ch. 23 - Why is feed specified for a boring operation...
Ch. 23 - Why are depths of cut in boring usually smaller...Ch. 23 - How can work be held and supported in a lathe?Ch. 23 - How is a workpiece that is mounted between centers...Ch. 23 - What will happen to the workpiece when turned, if...Ch. 23 - Why is it not advisable to hold hot-rolled steel...Ch. 23 - How does a steady rest differ from a follow rest?Ch. 23 - What are the advantages and disadvantages of a...Ch. 23 - Why should the distance the cutting tool overhangs...Ch. 23 - Prob. 19RQCh. 23 - How can a tapered part be turned on a lathe?Ch. 23 - Why might it be desirable to use a heavy depth of...Ch. 23 - If the rpm for a facing cut (assuming given work...Ch. 23 - Why is it usually necessary to take relatively...Ch. 23 - How does the corner radius of the tool influence...Ch. 23 - What effect does a BUE have on the diameter of the...Ch. 23 - How does the multiple-spindle screw machine differ...Ch. 23 - Why does boring ensure concentricity between the...Ch. 23 - Why are vertical spindle machines better suited...Ch. 23 - Prob. 29RQCh. 23 - Prob. 30RQCh. 23 - In which figures in this chapter is a dead center...Ch. 23 - Prob. 32RQCh. 23 - In which figures in this chapter showing setups do...Ch. 23 - How many form tools are being utilized in the...Ch. 23 - Prob. 35RQCh. 23 - Select the speed, feed, and depth of cut for...Ch. 23 - Calculate the rpm NS to run the spindle on a lathe...Ch. 23 - The lathe in problem 2 has rpm settings of 20, 30,...Ch. 23 - Calculate the cutting time if the length of cut is...Ch. 23 - Calculate the metal removal rate for machining at...Ch. 23 - Determine the speed, feed, and depth of cut when...Ch. 23 - At a speed of 90 fpm, feed of 0.030 ipr, and depth...Ch. 23 - Calculate the cutting time for a 4-in. length of...Ch. 23 - For a boring operation at V=90,fr=0.030, and...Ch. 23 - A cutting speed of 100 sfpm has been selected for...Ch. 23 - The following data apply for machining a part on a...Ch. 23 - A finish cut for a length of 10 in. on a diameter...Ch. 23 - A workpiece 10 in. in diameter is to be faced down...Ch. 23 - A hole 89 mm in diameter is to be drilled and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A C C 2r A 2r B B (a) (b) Problem 3 Refer to (b) of the figure shown above. The disk OA is now rolling with no slip at a constant angular velocity of w. Find the angular velocity and angular acceleration of link AB and BC. (Partial Answers: WBC = 2wk, AB = w²k)arrow_forwardProblem 2 Refer to (a) of the figure shown below, where the disk OA rotates at a constant angular velocity of w. Find the angular velocity and angular acceleration of link AB and link BC. (Partial Answers: WBC = wk, AB = w²k) A 2r C B (a) A 2r B (b)arrow_forwardExample Two rotating rods are connected by slider block P. The rod attached at A rotates with a constant clockwise angular velocity WA. For the given data, determine for the position shown (a) the angular velocity of the rod attached at B, (b) the relative velocity of slider block P with respect to the rod on which it slides. b = 8 in., w₁ = 6 rad/s. Given: b = 8 in., WA = 6 rad/s CW constant Find: (a). WBE (b). Vp/Frame E 60° 20° Barrow_forward
- Y F1 α В X F2 You and your friends are planning to move the log. The log. needs to be moved straight in the x-axis direction and it takes a combined force of 2.9 kN. You (F1) are able to exert 610 N at a = 32°. What magnitude (F2) and direction (B) do you needs your friends to pull? Your friends had to pull at: magnitude in Newton, F2 = direction in degrees, ẞ = N degarrow_forward100 As a spring is heated, its spring constant decreases. Suppose the spring is heated and then cooled so that the spring constant at time t is k(t) = t sin + N/m. If the mass-spring system has mass m = 2 kg and a damping constant b = 1 N-sec/m with initial conditions x(0) = 6 m and x'(0) = -5 m/sec and it is subjected to the harmonic external force f (t) = 100 cos 3t N. Find at least the first four nonzero terms in a power series expansion about t = 0, i.e. Maclaurin series expansion, for the displacement: • Analytically (hand calculations) Creating Simulink Model Plot solutions for first two, three and four non-zero terms as well as the Simulink solution on the same graph for the first 15 sec. The graph must be fully formatted by code.arrow_forwardTwo springs and two masses are attached in a straight vertical line as shown in Figure Q3. The system is set in motion by holding the mass m₂ at its equilibrium position and pushing the mass m₁ downwards of its equilibrium position a distance 2 m and then releasing both masses. if m₁ = m² = 1 kg, k₁ = 3 N/m and k₂ = 2 N/m. (y₁ = 0) www k₁ = 3 Jm₁ = 1 k2=2 www (Net change in spring length =32-31) (y₂ = 0) m₂ = 1 32 32 System in static equilibrium System in motion Figure Q3 - Coupled mass-spring system Determine the equations of motion y₁ (t) and y₂(t) for the two masses m₁ and m₂ respectively: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Produce an animation of the system for all solutions for the first minute.arrow_forward
- Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forward5. Estimate the friction pressure gradient in a 10.15 cm bore unheated horizontal pipe for the following conditions: Fluid-propylene Pressure 8.175 bar Temperature-7°C Mass flow of liquid-2.42 kg/s. Density of liquid-530 kg/m³ Mass flow of vapour-0.605 kg/s. Density of vapour-1.48 kg/m³arrow_forwardDescribe the following HVAC systems. a) All-air systems b) All-water systems c) Air-water systems Graphically represent each system with a sketch.arrow_forward
- Two large tanks, each holding 100 L of liquid, are interconnected by pipes, with the liquid flowing from tank A into tank B at a rate of 3 L/min and from B into A at a rate of 1 L/min (see Figure Q1). The liquid inside each tank is kept well stirred. A brine solution with a concentration of 0.2 kg/L of salt flows into tank A at a rate of 6 L/min. The diluted solution flows out of the system from tank A at 4 L/min and from tank B at 2 L/min. If, initially, tank A contains pure water and tank B contains 20 kg of salt. A 6 L/min 0.2 kg/L x(t) 100 L 4 L/min x(0) = 0 kg 3 L/min 1 L/min B y(t) 100 L y(0) = 20 kg 2 L/min Figure Q1 - Mixing problem for interconnected tanks Determine the mass of salt in each tank at time t≥ 0: Analytically (hand calculations) Using MATLAB Numerical Functions (ode45) Creating Simulink Model Plot all solutions on the same graph for the first 15 min. The graph must be fully formatted by code.arrow_forwardased on the corresponding mass flow rates (and NOT the original volumetric flow rates) determine: a) The mass flow rate of the mixed air (i.e., the combination of the two flows) leaving the chamber in kg/s. b) The temperature of the mixed air leaving the chamber. Please use PyscPro software for solving this question. Notes: For part (a), you will first need to find the density or specific volume for each state (density = 1/specific volume). The units the 'v' and 'a' are intended as subscripts: · kgv = kg_v = kgv = kilogram(s) [vapour] kga = kg_a =kga = kilogram(s) [air]arrow_forwardThe answers to this question s wasn't properly given, I need expert handwritten solutionsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License