EBK MANUFACTURING ENGINEERING & TECHNOL
7th Edition
ISBN: 8220100793431
Author: KALPAKJIAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 34QLP
It has been stated that titanium-nitride coatings allow cutting speeds and feeds to be higher than those for uncoated tools. Survey the technical literature and prepare a table showing the percentage increase of speeds and feeds that would be made possible by coating the tools.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 150-mm-long, 12.5-mm-diameter 304 stainless-steel rod is being reduced in diameter
to 12.0 mm by turning on a lathe. The spindle rotates at N = 400 rpm, and the tool is
traveling at an axial speed of 200 mm/min. Calculate the cutting speed, material-
removal rate, cutting time, power dissipated, and cutting force.
%3D
(b)
During a certain machining experiment at the UCSI workshop, it is observed
that temperature at the tool workpiece interface is 1200 °C at a cutting speed of
300 mm/min with a feed rate of 0.002 mm/rev.
(1)
Analyse how the temperature will be affected if the cutting speed is
increased by 100 %.
(ii)
Detemine the cutting speed necessary to achieve a maximum cutting
temperature of 900 °C.
Explain the following terms and situations in metal cutting. Give enough explanation with figures if it is necessary.
A)Force and chatter vibrations. How can you detect the vibration during the machining? How can you decide which type of the vibration you have?
B) Mode shapes.
C)Mode coupling.
D)Process damping. Which parameters can affect the process damping?
i)Mode coupling.
j) Regenerative chatter vibrations.
k) Stability lobes.
Chapter 22 Solutions
EBK MANUFACTURING ENGINEERING & TECHNOL
Ch. 22 - What are the major properties required of...Ch. 22 - What is the composition of a typical carbide tool?Ch. 22 - Why were cutting-tool inserts developed?Ch. 22 - Why are some tools coated? What are the common...Ch. 22 - Explain the applications and limitations of...Ch. 22 - List the major functions of cutting fluids.Ch. 22 - Why is toughness important for cutting-tool...Ch. 22 - Is the elastic modulus important for cutting-tool...Ch. 22 - Explain how cutting fluids penetrate the toolchip...Ch. 22 - List the methods by which cutting fluids are...
Ch. 22 - Describe the advantages and limitations of (a)...Ch. 22 - What is a cermet? What are its advantages?Ch. 22 - Explain the difference between M-series and...Ch. 22 - Why is cBN generally preferred over diamond for...Ch. 22 - What are the advantages to dry machining?Ch. 22 - Explain why so many different types of...Ch. 22 - Which tool-material properties are suitable for...Ch. 22 - Describe the reasons for and advantages of coating...Ch. 22 - Make a list of the alloying elements used in...Ch. 22 - As stated in Section 22.1, tool materials can have...Ch. 22 - Explain the economic impact of the trend shown in...Ch. 22 - Why does temperature have such an important effect...Ch. 22 - Ceramic and cermet cutting tools have certain...Ch. 22 - What precautions would you take in machining with...Ch. 22 - Can cutting fluids have any adverse effects in...Ch. 22 - Describe the trends you observe in Table 22.2.Ch. 22 - Why are chemical stability and inertness important...Ch. 22 - Titanium-nitride coatings on tools reduce the...Ch. 22 - Describe the necessary conditions for optimal...Ch. 22 - Negative rake angles generally are preferred for...Ch. 22 - Do you think that there is a relationship between...Ch. 22 - Make a survey of the technical literature, and...Ch. 22 - In Table 22.1, the last two properties listed...Ch. 22 - It has been stated that titanium-nitride coatings...Ch. 22 - Note in Fig. 22.1 that all tool materials,...Ch. 22 - Referring to Table 22.1, state which tool...Ch. 22 - Which of the properties listed in Table 22.1 is,...Ch. 22 - If a drill bit is intended only for woodworking...Ch. 22 - What are the consequences of a coating on a tool...Ch. 22 - Discuss the relative advantages and limitations of...Ch. 22 - Emulsion cutting fluids typically consist of 95%...Ch. 22 - List and explain the considerations involved in...Ch. 22 - Review the contents of Table 22.1. Plot several...Ch. 22 - Obtain data on the thermal properties of various...Ch. 22 - The first column in Table 22.2 shows 10 properties...Ch. 22 - Describe in detail your thoughts regarding the...Ch. 22 - One of the principal concerns with coolants is...Ch. 22 - How would you go about measuring the effectiveness...Ch. 22 - There are several types of cutting-tool materials...Ch. 22 - Assume that you are in charge of a laboratory for...Ch. 22 - Tool life could be greatly increased if an...Ch. 22 - List the concerns you would have if you needed to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- a rod is to be manufactured using turning operations and is made of Nickel alloy. The rod is 80 mm in length and 15 mm in diameter. The final required diameter is 10 mm and the spindle rotates at N = 500 rpm while the tool axial speed is 100 mm/ min. Calculate material removal rate, cutting speed, cutting time, the power dissipated, and cutting force.arrow_forwardEstimate the machining time required in rough turning a 2.0-m-long, annealed aluminum-alloy round bar that is 75 mm in diameter, using (a) a high-speed steel tool; and (b) a carbine tool. Use a feed of 2 mm/rev. Assume max cutting speed for high-speed tools is moving 4 m/s and for carbide tools is moving 7 m/s.arrow_forward(a) Explain the differences between High-speed steels, cubic boron nitride and polycrystalline diamonds cutting tools.arrow_forward
- manufacturing technology please answer as soon as possiblearrow_forwardQuestion 2. The two sources of heat are (a) shearing in the primary shear plane and (b) friction at the tool-chip interface. What type of the tool wear or tool failure could be caused as a result of developing these heat sources on machining process? Explain your answer in accordance with following representation of tool wear. Insert cutting edgearrow_forwardThis Question is from Metal and Machine Tools. Due Today Please Answer !!arrow_forward
- Question 1: Explain the following terms and situations in metal cutting. Give enough explanation with figures if it is necessary. a) Up and down milling operations. What are the effects on the workpiece surface finish and machine tool? b) Orthogonal and oblique cutting. c) Cutting force diagram in orthogonal cutting. d) Theoretical prediction of shear angle in orthogonal cutting. e) Machinability. f) Force and chatter vibrations. How can you detect the vibration during the machining? How can you decide which type of the vibration you have? g) Mode shapes. Mode coupling. h) Process damping. Which parameters can affect the process damping? i) j) Regenerative chatter vibrations. k) Stability lobes. Question 2: How will the cutting force be affected by the following situations during the machining operation? Why? a) Large rake angle b) Small relief angle c) Large nose radius d) Sharp cutting edge e) Smooth rake face f) Hard workpiece material g) High cutting speed h) Large feed rate i)…arrow_forward(e) Briefly describe types of chips that occur in metal cutting. (f) For orthogonal cutting, the tool rake angle =15°. The chip thickness before the cut is 0.30mm and the cut yields a deformed chip thickness = 0.65mm. Calculate the shear plane angle and shear strain.arrow_forwardIn an orthogonal cutting test with a bar of 75 mm diameter is reduced to 73 mm by using a HSS tool with arake angle = 10o, following observations were made: length of the chip, lc = 69.44 mm, cutting ratio r =0.3, the horizontal component of the cutting force, FH = 1450 N, and the vertical component of the cuttingforce, FV = 850 N. The various parameters recorded in this cutting operation are: depth of cut, d = 2 mm;feed rate, f = 0.3 mm/rev, cutting speed, V = 60 m/min. Using Merchant’s theory calculate the following:1) Friction force along rake face2) Normal force acting on rake face3) Shear force along the shear plane4) Normal force acting on shear plane5) The percentage error in shear angle predicted by Merchant’s theory6) Shear velocity7) Chip velocity8) Total work done9) The shear work proportion out of the total work done10) The friction work proportion out of the total work donearrow_forward
- I need the answer at 20 minutearrow_forwardDiscuss the effects of cutting speed, feed rate, and depth of cut on the tool wear rate during a turning operation. How does each parameter influence the surface finish of the workpiece? Provide a detailed explanation based on the principles of metal cutting mechanics.arrow_forwardDuring orthogonal cutting operation of material has shear strength 95.5 Mpa. The cutting force is more than thrust force by 10%. The rake angle = 5°, the width of the cut = 5.0 mm, the chip thickness before the cut = 0.6, and the chip thickness ratio = 0.38. Determine (a) both cutting force and thrust force and (b) the coefficient of friction in the operation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY