Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 22, Problem 34P
To determine
The average power required for the freezer’s motor to maintain the constant temperature in the freezer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I often make tea in my microwave oven. I know that it takes two minutes to bring the temperature of a cup of water from room temperature to just about boiling: ready for the teabag. I looked up the characteristics of a microwave oven. Typically their power rating is about 1000 W, but I know that this is the power consumed from the power company, not the power delivered to the water. I looked up the efficiency of microwave ovens, and found that it is about 64%, meaning that a typical oven delivers 640 W to the water. I also looked up the frequency of the microwaves that an oven uses, and found thatf= 2,450 MHz.
(a) How much energy is delivered to the water in the making of a cup of tea?
(b) What is the wavelength of the microwave?
(c) What is the energy of one microwave photon?
(d) How many microwave photons are absorbed by the water in making a cup of tea?
The energy entering an electric heater by electrical transmission can be converted to internal energy with an efficiency of 100%. By what factor does the cost of heating your home change when you replace your electric heating system with an electric heat pump that has a COP of 3.50? Assume that the motor running the heat pump is 100% efficient.
sometimes the hot water produced by a solar water heater is not warm enough to mee the needs of the occupants of a building. A traditional water heater inside the building supplies additional thermal energy to the solar warmed water. How can this method still reduce the overalll amount of natural gas or electrical energy a building uses?
Chapter 22 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 22.1 - The energy input to an engine is 4.00 times...Ch. 22.2 - The energy entering an electric heater by...Ch. 22.4 - Three engines operate between reservoirs separated...Ch. 22.6 - (a) Suppose you select four cards at random from a...Ch. 22.7 - An ideal gas is taken from an initial temperature...Ch. 22.7 - True or False: The entropy change in an adiabatic...Ch. 22 - Prob. 1OQCh. 22 - Prob. 2OQCh. 22 - Prob. 3OQCh. 22 - Of the following, which is not a statement of the...
Ch. 22 - Prob. 5OQCh. 22 - Prob. 6OQCh. 22 - Prob. 7OQCh. 22 - Prob. 8OQCh. 22 - Prob. 9OQCh. 22 - Prob. 10OQCh. 22 - The arrow OA in the PV diagram shown in Figure...Ch. 22 - The energy exhaust from a certain coal-fired...Ch. 22 - Discuss three different common examples of natural...Ch. 22 - Prob. 3CQCh. 22 - The first law of thermodynamics says you cant...Ch. 22 - Energy is the mistress of the Universe, and...Ch. 22 - (a) Give an example of an irreversible process...Ch. 22 - The device shown in Figure CQ22.7, called a...Ch. 22 - A steam-driven turbine is one major component of...Ch. 22 - Discuss the change in entropy of a gas that...Ch. 22 - Prob. 10CQCh. 22 - Prob. 11CQCh. 22 - (a) If you shake a jar full of jelly beans of...Ch. 22 - What are some factors that affect the efficiency...Ch. 22 - A particular heat engine has a mechanical power...Ch. 22 - The work done by an engine equals one-fourth the...Ch. 22 - A heat engine takes in 360 J of energy from a hot...Ch. 22 - A gun is a heat engine. In particular, it is an...Ch. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Suppose a heat engine is connected to two energy...Ch. 22 - Prob. 8PCh. 22 - During each cycle, a refrigerator ejects 625 kJ of...Ch. 22 - Prob. 10PCh. 22 - Prob. 11PCh. 22 - Prob. 12PCh. 22 - A freezer has a coefficient of performance of...Ch. 22 - Prob. 14PCh. 22 - One of the most efficient heat engines ever built...Ch. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - Prob. 18PCh. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - Prob. 21PCh. 22 - How much work does an ideal Carnot refrigerator...Ch. 22 - Prob. 23PCh. 22 - A power plant operates at a 32.0% efficiency...Ch. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - Prob. 27PCh. 22 - Prob. 28PCh. 22 - A heat engine operates in a Carnot cycle between...Ch. 22 - Suppose you build a two-engine device with the...Ch. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Prob. 33PCh. 22 - Prob. 34PCh. 22 - Prob. 35PCh. 22 - Prob. 36PCh. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - Prob. 39PCh. 22 - Prob. 40PCh. 22 - Prob. 41PCh. 22 - Prob. 42PCh. 22 - A Styrofoam cup holding 125 g of hot water at 100C...Ch. 22 - Prob. 44PCh. 22 - A 1 500-kg car is moving at 20.0 m/s. The driver...Ch. 22 - Prob. 46PCh. 22 - Prob. 47PCh. 22 - Prob. 48PCh. 22 - Prob. 49PCh. 22 - What change in entropy occurs when a 27.9-g ice...Ch. 22 - Calculate the change in entropy of 250 g of water...Ch. 22 - Prob. 52PCh. 22 - Prob. 53PCh. 22 - Prob. 54PCh. 22 - Prob. 55PCh. 22 - Prob. 56APCh. 22 - Prob. 57APCh. 22 - A steam engine is operated in a cold climate where...Ch. 22 - Prob. 59APCh. 22 - Prob. 60APCh. 22 - Prob. 61APCh. 22 - In 1993, the U.S. government instituted a...Ch. 22 - Prob. 63APCh. 22 - Prob. 64APCh. 22 - Prob. 65APCh. 22 - Prob. 66APCh. 22 - In 1816, Robert Stirling, a Scottish clergyman,...Ch. 22 - Prob. 68APCh. 22 - Prob. 69APCh. 22 - Prob. 70APCh. 22 - Prob. 71APCh. 22 - Prob. 72APCh. 22 - Prob. 73APCh. 22 - A system consisting of n moles of an ideal gas...Ch. 22 - A heat engine operates between two reservoirs at...Ch. 22 - Prob. 76APCh. 22 - Prob. 77APCh. 22 - Prob. 78APCh. 22 - A sample of an ideal gas expands isothermally,...Ch. 22 - Prob. 80APCh. 22 - Prob. 81CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A Carnot air conditioner takes energy from the thermal energy of a room at 70 F and transfers it as heat to the outdoors, which is at 96 F.For each joule of electric energy required to operate the air conditioner, how many joules are removed from the room?arrow_forwardb) Energy may be stored for use during peak demand by pumping water to a high reservoir when needed. Suppose water is pumped to a lake 135 m above the turbines and at a rate of 1.35 x 10 kgs" for 10 hrs at night. ) How much energy (kWh) is needed to do this each night. i) If all this energy is released during a-14 h day, at 75% efficiency, what is the average power output? e) State three forms of environmental polution and how they can be prevented.arrow_forwardAt a certain location , the solar power per unit area reaching Earth’s surface is 200 W/m square , average over a 24 hours day. If the average power requirement in your home 4.0 KW you can covert solar power to electric power with 13% efficiency. How large a collector area will you need to meet all your household energy requirements from solar energy?arrow_forward
- Solar panels are rated by their theoretical maximum output capacity. A 2-kW PV panel would theoretically produce 2 kW of electricity at its maximum output (during peak solar radiance). If the average daily peak sun-hours in Philadelphia are approximately 4.0 hr and a rowhome is outfitted with 10 PV panels each having a capacity of 260 W, how much energy (kilowatt x hours) would be generated in one year (in units of kWh/year)?arrow_forwardAnswer b and carrow_forwardAs shown in Figure CQ33.6, a person pulls a vacuum cleaner at speed v across a horizontal floor, exerting on it a force of magnitude F directed upward at an angle with the horizontal. (a) At what rate is the person doing work on the cleaner? (b) State as completely as you can the analogy between power in this situation and in an electric circuit.arrow_forward
- (a) What is the available energy content, in joules, of a battery that operates a 2.00-W electric clock for 18 months? (b) How long can a battery that can supply 8.00104 J run a pocket calculator that consumes energy at the rate of 1.00103 ?arrow_forwardYou place frozen soup (T = 17C) in a microwave oven for 3.5 min. The oven transfers 650 W to the soup. Model the soup as 0.35 kg of water (initially ice). What are the temperature and state of the soup when the oven stops?arrow_forwardWhat is the work done by a 16-watt electric fan in 30 minutes? 28 k 31 17 k 18 kJarrow_forward
- In a household during a particular week three 2kW fires are used on average 25 h each and eight 100W light bulbs are used on average 35 h each. Determine the cost of electricity for the week if 1 unit of electricity costs 12.82 p.arrow_forwardAssume that the turbines at a coal-powered power plant were upgraded resulting in an improvement in efficiency of 3.14%. Assume that prior to the upgrade the power station had an efficiency of 38%, and that the heat transfer into the engine in one day is still the same at 2.63 x 1014 J. (a) How much more electrical power is produced due to the upgrade? 95581 v kW (b) How much less heat transfer occurs to the environment due to the upgrade? 800000000000c x Jarrow_forwardAt a certain location, the solar power per unit area reaching Earth's surface is 200 W/ m^2, averaged over a 24-hour day. If the average power requirement in your home is 3 kW and you can convert solar power to electric power with 10 % efficiency, how large a collector area will you need to meet all your household energy requirements from solar energy? (Will a collector fit in your yard or on your roof? ).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY