
(a)
All unknown pressures, volumes, and temperatures in the table given in the question.
(a)

Answer to Problem 32P
The table completed with unknown pressures, volumes, and temperatures given beow.
state | P(kPa) | V (L) | T (K) |
A | 1400 | 10.0 | 720 |
B | 875 | 16.0 | 720 |
C | 445 | 24.0 | 549 |
D | 712 | 15.0 | 549 |
Explanation of Solution
Consider the adiabatic process
Write the adiabatic condition for the monoatomic ideal gas.
Here,
Rearrange above equation to get
Write ideal gas equation for ideal gas at point
Here,
Rearrange above equation to get
Write ideal gas equation for ideal gas at point
Rearrange above equation to get
Use equation (III) in (IV) in equation (I) to get
Consider the isothermal process
Write the condition for the isothermal process.
Write the equation for an isothermal process.
Here,
Apply isothermal equation to process
Rearrange above equation to get
Substitute
Consider the adiabatic process
Write the adiabatic condition for the monoatomic ideal gas.
Here,
Apply isothermal equation to process
Rearrange to get
Use equation (XI) and (IX) in equation (X) to get
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
The table completed with unknown pressures, volumes, and temperatures given below.
state | P(kPa) | V (L) | T (K) |
A | 1400 | 10.0 | 720 |
B | 875 | 16.0 | 720 |
C | 445 | 24.0 | 549 |
D | 712 | 15.0 | 549 |
(b)
The energy added by heat, work done by the engine, and the change in internal energy for each of the steps
(b)

Answer to Problem 32P
The energy added by heat, work done by the engine, and the change in internal energy for each of the steps
Process | Q(kJ) | W(kJ) | |
+6.58 | 0 | ||
0 | |||
0 | |||
0 |
Explanation of Solution
Consider the isothermal process
Write the expression for the change in internal energy.
Here,
Write the expression for the first law of
Here,
Write the expression for the work done in the isothermal process.
Consider the adiabatic process
Therefore,
Write the expression for the change in internal energy.
Here,
Consider the isothermal process
Write the expression for the work done in the isothermal process.
Consider the adiabatic process
Therefore,
Write the expression for the change in internal energy.
Here,
Conclusion:
For the isothermal process
For isothermal process
Substitute
Substitute
Substitute
For the adiabatic process
Substitute
Substitute
Consider the isothermal process
Substitute
Substitute
Substitute
For the adiabatic process
Substitute
Substitute
Therefore,
Process | Q(kJ) | W(kJ) | |
+6.58 | 0 | ||
0 | |||
0 | |||
0 |
(c)
The efficiency
(c)

Answer to Problem 32P
The efficiency
Explanation of Solution
Write the expression for the efficiency.
Here,
The total work done by the engine is the negative of the work input.
Write the expression for the net work done by the engine.
Here,
Write the expression for the
Here,
Write the expression for
Use equation (XXII) and (XXIII) in equation (XX) to get
Conclusion:
Substitute
Substitute
Therefore, the efficiency
(d)
To show that the efficiency is equal to Carnot efficiency.
(d)

Answer to Problem 32P
It is showed that the efficiency of the engine calculated in part(c) is equal to Carnot efficiency.
Explanation of Solution
Write the expression for the Carnot efficiency.
Here,
Conclusion:
Substitute
The above calculated efficiency is equal to that obtained in part(c). Thus, efficiency of the engine is equal to Carnot efficiency.
Therefore, it is showed that the efficiency of the engine calculated in part(c) is equal to Carnot efficiency.
Want to see more full solutions like this?
Chapter 22 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- Hi Expert in Physics, Could you please Rewrite thses random equations using good formula of mathematics and explain each Greek alphabet and their meaning in English? Best Regards, Yahyaarrow_forwardHi Expert, I have uploaded picture, could you please name the Greek alphabet and their name in English?arrow_forwardHi Expert in Physics, I have uploaded pictures with respect to some physics equations. Could please name all Greek alphabet and their English name?arrow_forward
- 81 SSM Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of 2; the current emerges perpendicularly out of the page. (a) Use the Biot-Savart law and symmetry to show that for all points B P P. BD P' Figure 29-84 Problem 81. x P above the sheet and all points P' below it, the magnetic field B is parallel to the sheet and directed as shown. (b) Use Ampere's law to prove that B = ½µλ at all points P and P'.arrow_forwardWhat All equations of Ountum physics?arrow_forwardPlease rewrite the rules of Quantum mechanics?arrow_forward
- Suppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addition, assume your house is the only one using electric power. At a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the primary of the transformer. The secondary is connected to the primary of another step-down transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole. The secondary of this transformer delivers a 240-V emf to your house. How much power is your house using? Remember that the current and voltage given in this problem are rms values.arrow_forwardThe human eye is most sensitive to light having a frequency of about 5.5 × 1014 Hz, which is in the yellow-green region of the electromagnetic spectrum. How many wavelengths of this light can fit across a distance of 2.2 cm?arrow_forwardA one-dimensional harmonic oscillator of mass m and angular frequency w is in a heat bath of temperature T. What is the root mean square of the displacement of the oscillator? (In the expressions below k is the Boltzmann constant.) Select one: ○ (KT/mw²)1/2 ○ (KT/mw²)-1/2 ○ kT/w O (KT/mw²) 1/2In(2)arrow_forward
- Two polarizers are placed on top of each other so that their transmission axes coincide. If unpolarized light falls on the system, the transmitted intensity is lo. What is the transmitted intensity if one of the polarizers is rotated by 30 degrees? Select one: ○ 10/4 ○ 0.866 lo ○ 310/4 01/2 10/2arrow_forwardBefore attempting this problem, review Conceptual Example 7. The intensity of the light that reaches the photocell in the drawing is 160 W/m², when 0 = 18°. What would be the intensity reaching the photocell if the analyzer were removed from the setup, everything else remaining the same? Light Photocell Polarizer Insert Analyzerarrow_forwardThe lifetime of a muon in its rest frame is 2.2 microseconds. What is the lifetime of the muon measured in the laboratory frame, where the muon's kinetic energy is 53 MeV? It is known that the rest energy of the muon is 106 MeV. Select one: O 4.4 microseconds O 6.6 microseconds O 3.3 microseconds O 1.1 microsecondsarrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





