
(a)
The entropy rise of the entire system.
(a)

Answer to Problem 78AP
The entropy rise of the entire system is
Explanation of Solution
Given info: The mass of the athlete and the water is
Write the expression to calculate the change in entropy of the system.
Here,
Write the expression to calculate the change in entropy of water.
Here,
Write the expression to convert the temperature from Fahrenheit to Kelvin.
Substitute
Thus, the temperature of body in Kelvin is
Substitute
Thus, the temperature of water in Kelvin is
Substitute
Integrate the above expression from the limit of
Write the expression to calculate the change in entropy of water.
Here,
Substitute
Substitute
Thus, the entropy rise of the entire system is
Conclusion:
Therefore, the entropy rise of the entire system is
(b)
The athlete’s temperature after she drinks the cold water.
(b)

Answer to Problem 78AP
The final temperature of the body is
Explanation of Solution
Given info: The mass of the athlete and the water is
Write the expression of heat balance equation.
Here,
Substitute
Conclusion:
Therefore, the final temperature of the body is
(c)
The entropy rise of the entire system.
(c)

Answer to Problem 78AP
The entropy rise of the entire system is
Explanation of Solution
Given info: The mass of the athlete and the water is
Write the expression to calculate the change in entropy of the system.
Write the expression to calculate the change in entropy of water.
Integrate the above expression from the limit of
Substitute
Write the expression to calculate the change in entropy of body.
Here,
Integrate the above expression from the limit of
Substitute
Substitute
`
Thus, the entropy rise of the entire system is
Conclusion:
Therefore, the entropy rise of the entire system is
(d)
The result by comparing the part (a) and (c).
(d)

Answer to Problem 78AP
The change in entropy in part (c) is less than that of part (a) by less than 1%.
Explanation of Solution
Given info: The mass of the athlete and the water is
The percentage change in entropy is,
Thus the change in entropy in part (c) is less than that of part (a) by less than 1%.
Conclusion:
Therefore, the change in entropy in part (c) is less than that of part (a) by less than 1%.
Want to see more full solutions like this?
Chapter 22 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- Hi Expert in Physics, I have uploaded pictures with respect to some physics equations. Could please name all Greek alphabet and their English name?arrow_forward81 SSM Figure 29-84 shows a cross section of an infinite conducting sheet carrying a current per unit x-length of 2; the current emerges perpendicularly out of the page. (a) Use the Biot-Savart law and symmetry to show that for all points B P P. BD P' Figure 29-84 Problem 81. x P above the sheet and all points P' below it, the magnetic field B is parallel to the sheet and directed as shown. (b) Use Ampere's law to prove that B = ½µλ at all points P and P'.arrow_forwardWhat All equations of Ountum physics?arrow_forward
- Please rewrite the rules of Quantum mechanics?arrow_forwardSuppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addition, assume your house is the only one using electric power. At a substation the primary of a step-down transformer (turns ratio = 1:23) receives the voltage from the high-voltage transmission line. Because of your usage, a current of 51.1 mA exists in the primary of the transformer. The secondary is connected to the primary of another step-down transformer (turns ratio = 1:36) somewhere near your house, perhaps up on a telephone pole. The secondary of this transformer delivers a 240-V emf to your house. How much power is your house using? Remember that the current and voltage given in this problem are rms values.arrow_forwardThe human eye is most sensitive to light having a frequency of about 5.5 × 1014 Hz, which is in the yellow-green region of the electromagnetic spectrum. How many wavelengths of this light can fit across a distance of 2.2 cm?arrow_forward
- A one-dimensional harmonic oscillator of mass m and angular frequency w is in a heat bath of temperature T. What is the root mean square of the displacement of the oscillator? (In the expressions below k is the Boltzmann constant.) Select one: ○ (KT/mw²)1/2 ○ (KT/mw²)-1/2 ○ kT/w O (KT/mw²) 1/2In(2)arrow_forwardTwo polarizers are placed on top of each other so that their transmission axes coincide. If unpolarized light falls on the system, the transmitted intensity is lo. What is the transmitted intensity if one of the polarizers is rotated by 30 degrees? Select one: ○ 10/4 ○ 0.866 lo ○ 310/4 01/2 10/2arrow_forwardBefore attempting this problem, review Conceptual Example 7. The intensity of the light that reaches the photocell in the drawing is 160 W/m², when 0 = 18°. What would be the intensity reaching the photocell if the analyzer were removed from the setup, everything else remaining the same? Light Photocell Polarizer Insert Analyzerarrow_forward
- The lifetime of a muon in its rest frame is 2.2 microseconds. What is the lifetime of the muon measured in the laboratory frame, where the muon's kinetic energy is 53 MeV? It is known that the rest energy of the muon is 106 MeV. Select one: O 4.4 microseconds O 6.6 microseconds O 3.3 microseconds O 1.1 microsecondsarrow_forwardThe Lagrangian of a particle performing harmonic oscil- lations is written in the form L = ax² - Bx² - yx, where a, and are constants. What is the angular frequency of oscillations? A) √2/a B) √(+2a)/B C) √√Ba D) B/αarrow_forwardThe mean temperature of the Earth is T=287 K. What would the new mean temperature T' be if the mean distance between the Earth and the Sun was increased by 2%? Select one: ○ 293 K O 281 K ○ 273 K 284 Karrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





